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CHAPTER 1. INTRODUCTION 

Software reuse is the practice of using existing software to build new software. There are 

varying reasons for employing software reuse, many of them owing to the convenience, 

economy, and recognized service history of existing code. However, reused software 

components are often custom designs, specifically engineered and tested to work in a single 

context. If software is reused in a different context, the overall assurance case (reviews, testing, 

service history, etc) is incomplete; the argument for trust was based on a specific context, not an 

arbitrary one. 

This paper introduces a tool built to analyze programs composed of existing software 

components using contract-based reasoning. This tool is called SIMPAL (Static IMPerative 

AnaLyzer). It features a domain specific language that can be used to specify a software program 

that is composed of existing components. Once a program is specified, users can analyze whether 

a program obeys all of the preconditions required by the reused components, and that the 

resulting program obeys its intended postconditions. Further, it allows the user the ability to 

specify exactly how a component will utilize and modify global variables in the analysis. 

Additional analyses are performed to identify unreachable portions of the CFG, identifying dead-

code. Finally, results are reported back to the user identifying a sequence of inputs that could 

violate the various contracts specified in the new program. This information can be used by the 

program developer to refine the software specification. 
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CHAPTER 2. BACKGROUND 

This thesis introduces the SIMPAL framework which extends the concept of contract-

based reasoning to imperative programs written in the Limp program specification language. 

This tool enables users to construct programs composed of existing components and verify that 

the resultant program will operate as intended. The analysis it performs is assume-guarantee 

reasoning; that is, it verifies that each component is called such that its assumptions are satisfied 

and that the overall program meets its stated goals. This approach is similar to the approach 

employed by the AGREE [1] tool, however, the input language to SIMPAL is more expressive; 

it allows for a full complement of control flow mechanisms (if/then/else statements, while and 

for loops, break and continue, labels and gotos, and return statements) and the use of global 

variables. AGREE models are strictly represented in the Lustre synchronous dataflow language. 

The AGREE tool implements contract-based reasoning on hardware and software 

architectures specified in the Architectural Analysis and Design Language (AADL). This is 

accomplished by creating a Lustre model of the behavioral aspects of an AADL model and 

analyzing it with the JKind model checker. SIMPAL extends this work by introducing extensions 

to the Lustre language that enable users to write an imperative style program specification. It 

performs contract based verification on this program specification and identifies whether the 

component assumptions are honored by the program, and whether the program satisfies its stated 

postconditions. The following sections discuss the Lustre language, software model checking, 

compositional reasoning and contract-based verification, and finally, the approach implemented 

in the AGREE framework. 
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Lustre 

The Lustre [2] synchronous dataflow language is designed for programming reactive 

systems. Programs written in the Lustre language continuously interact with their environment; 

they sample inputs and compute outputs on every time-step. This makes Lustre a natural fit for 

developing programs for controlling discrete event systems [3], automated control and 

monitoring systems, signal processing, hybrid automata [4], and certain safety-critical 

applications, such as avionics software. Shown in Example 1 is a Lustre program that accepts 

three values that represent measurements provided from a sensor, and merges them into a single 

signal. This algorithm, often referred to as triplex voter or sensor fusion, could be used to 

provide a fault tolerant measurements in a safety critical application. 

1 
2 
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32 
33 
34 

const RATE : real = 0.05;
const MAX_ERROR : real = 0.1; 
 
node max(a : real; b : real) returns (out : real); 
let 
   out = if (a < b) then b else a; 
tel ; 
 
node min(a : real; b : real) returns (out : real); 
let 
   out = if (a < b) then a else b; 
tel ; 
 
node middleValue(a : real; b : real; c : real) returns (out : real); 
let 
   out = max(min(a,b), min(max(a,b),c)); 
tel ; 
 
node saturation(x : real; signal : real) returns (out : real); 
var 
   upper_limit, lower_limit : real; 
   property1 : bool; 
let 
   property1 = x > 0.0; 
   
   upper_limit = x; 
   lower_limit = ‐x; 
    
   out = if (signal < lower_limit) 
         then lower_limit 
         else if (signal > upper_limit) 
         then upper_limit 
         else signal; 
tel ; 
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node voter(a : real; b : real; c : real) returns (out : real); 
var 
   equalizationA, equalizationB, equalizationC : real; 
   equalizedA, equalizedB, equalizedC : real; 
   centering : real; 
let 
   equalizedA = a ‐ equalizationA; 
   equalizedB = b ‐ equalizationB; 
   equalizedC = c ‐ equalizationC; 
    
   centering= middleValue(equalizationA, equalizationB, equalizationC); 
    
   out = middleValue(equalizedA, equalizedB, equalizedC); 
    
   equalizationA = 0.0 ‐> pre equalizationA + 
    (RATE * (saturation(0.5, (equalizedA ‐ out)) ‐ saturation(0.25,centering))); 
   equalizationB = 0.0 ‐> pre equalizationB +  
     (RATE * (saturation(0.5, (equalizedB ‐ out)) ‐ saturation(0.25,centering))); 
   equalizationC = 0.0 ‐> pre equalizationC +  
     (RATE * (saturation(0.5, (equalizedC ‐ out)) ‐ saturation(0.25,centering))); 
tel ; 
 
node abs_diff(in1 : real; in2 : real) returns (out : real); 
var 
   diff : real; 
let 
   diff = in1 ‐ in2; 
 
   out =  
      if diff < 0.0  
      then ‐diff 
      else diff; 
tel ; 
 
node main(input : real; errorA : real; errorB : real; errorC : real) returns (out : 
real); 
var 
   pre_input : real; 
   input_change : real; 
   assert_input1, assert_input2, assert_errorA, assert_errorB, assert_errorC : 
bool; 
    
   prop1 : bool; 
let 
   pre_input = 0.0 ‐> pre input; 
   input_change = input ‐ pre_input; 
    
   assert_input1 = (input >= 0.0 and input <= 20.0); 
   assert_input2 = (input_change >= 0.0 and input_change <= 1.0); 
   assert_errorA = (errorA <= MAX_ERROR) and (errorA >= ‐MAX_ERROR); 
   assert_errorB = (errorB <= MAX_ERROR) and (errorB >= ‐MAX_ERROR); 
   assert_errorC = (errorC <= MAX_ERROR) and (errorC >= ‐MAX_ERROR); 
 
   assert assert_input1; 
   assert assert_input2; 
   assert assert_errorA; 
   assert assert_errorB; 
   assert assert_errorC; 
    
   out = voter(input + errorA, input + errorB, input + errorC); 
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92 
93 
94 

   prop1 = abs_diff(out,input) <= (4.0 * MAX_ERROR);
   ‐‐%PROPERTY prop1; 
tel ;  

Example 1 - Lustre program for a sensor fusion algorithm 

This Lustre program is derived from work on analyzing an industrial triplex voter [5]. 

The triplex voter is an algorithm used to merge the measurements from three similar sensors into 

a single value, incorporating features to smooth the fused value to prevent drastic transient 

fluctuations in the output value. This behavior is defined in the node called voter, found on lines 

36-53 of Example 1. The node main contains additional information that is used to reason about 

the relationship between the output of the voter and the three inputs. The property, named prop1 

on line 93, defines a proof obligation that says the difference between the output of the voter and 

the true value being measured is bounded by some constant term. 

Example 1 is analyzable using model checking tools developed to analyze Lustre 

programs. Kind 2 [6] uses bounded model checking [7], k-induction [8], and property directed 

reachability [9] model checking techniques to prove, or disprove safety properties of Lustre 

models. JKind [10] is a reimplementation of the Kind 2 model checker, developed in Java for 

portability and integration into tool frameworks. Model checking is discussed thoroughly in the 

following section. 

Model Checking 

Model checking is a verification technique that uses efficient algorithms to exhaustively 

verify that a model satisfies a formal specification. Model checking can be used to verify 

controllers of discrete event systems, hardware designs, and software. One popular model 

checker, Simulink Design Verifier [11], uses model checking to verify real-time systems 

expressed in Simulink/Stateflow [12]. Model checking was independently pioneered by Clarke 



www.manaraa.com

6 
 

 

and Emerson [13] and Sifakis and Queille [14]. Typically, model checking is automatic. This 

makes it attractive to industrial users. The biggest drawback of model checking is its 

susceptibility to the state-space explosion problem. Essentially, as the state-space of the model 

under analysis grows linearly, the time required to verify it grows exponentially. Since its 

introduction, most of the research in the field has been towards mitigation of the impact of state-

space explosion.  

Model checking approaches fall into two categories: explicit-state and symbolic. Explicit 

state tools examine each state individually to determine if the formal specification is violated. 

Symbolic tools analyze multiple states at a time, often through the use of compact efficient data 

structures, such as binary decision diagrams, to verify the program. Both approaches are 

discussed in the following sections.  

Explicit-State Model Checking 

Explicit state model checking (also referred to as enumerative state) tools examine each 

state, individually, to determine if the formal specification is violated. Perhaps the most 

accomplished explicit state model checker is the SPIN model checker [15]. It has been used to 

great success to verify complex algorithms. It was used to verify mission critical components of 

several space exploration missions, including the Mars Science Laboratory [16] and the Cassini 

unmanned spacecraft [17] used to explore Saturn and its moons. 

As discussed previously, model checking is sensitive to the state-space explosion 

problem. Explicit state model checkers, like SPIN, are more sensitive to state-space explosion, 

because they must examine each state individually. Nevertheless, advancements in efficiently 

codifying the state-space, such as bitstate hashing [18] and partial order reduction [19], have 

helped to mitigate the state-space explosion in explicit state approaches. Further improvements 
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in the verification algorithm, including parallelization [20] that resulted in and N-fold 

improvement (when parallelizing the algorithm across N CPUs) have helped explicit state remain 

successful in the face of ever-increasing complexity in software systems. 

Symbolic Model Checking 

Symbolic model checking [21] represented a significant improvement in the size of 

systems able to be verified with model checking. The first symbolic approaches used ordered 

binary decision diagrams (OBDDs) to efficiently represent the state space of the system to be 

verified. This approach is implemented in the SMV [22], NuSMV [23], and Symbolic Analysis 

Laboratory (SAL) tools [24], among others. More modern approaches symbolically represent the 

system using first order logic. While still susceptible to state-space explosion, symbolic tools 

fare much better than explicit state tools, successfully being used to analyze industrial systems 

containing up more than 10120 states [25]. One major limitation to this approach that OBDD 

representations are inherently limited; they can only capture finite-state systems. Finite-state 

systems (those containing boolean and integer variables) can be represented with OBDDs. 

Infinite-state systems (those containing real variables) cannot. This limits the applicability of the 

approach to software based systems that only contain booleans and bounded range integers. 

Yet another symbolic approach captures the model as a first-order logic representation 

which can then be analyzed using a satisfiability solver [26]. Initial approaches used the 

satisfiability solver to search for property violations in n-steps reachable from the initial states. 

This approach, known as bounded model checking, cannot demonstrate a property to be true, but 

can be useful for finding violations, and thus defects, in a given artifact. However, clever 

innovation led to proof obtaining approaches that used the bounded model checking algorithm to 

establish the base and inductive steps of an inductive proof. This approach, known as k-
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induction, uses a generalized form of induction and is useful for proving invariant properties 

over finite-state transition systems that represent software.  

Modern best-of-breed tools utilize satisfiability-modulo theory solvers [27] (SMT) to 

successfully analyze systems containing real variables and infinite-range integers. Parallelization 

of the inductive algorithm [28] resulted in moderate speed increases on multi-core machines. 

Current research is exploring techniques such as property directed reachability, which offer 

better performance on certain classes of models. 

Compositional Reasoning 

Despite continued progress in mitigating state-space explosion, it still remains a 

significantly limiting factor when using model checking to analyze industrial systems. 

Compositional reasoning is an approach that seeks to address the state-space explosion problem 

by breaking the global system into components, analyzing them separately, and then use the 

results of the component analyses to prove a property of the global system. Some approaches are 

automatic, while other approaches require manual intervention by the user. Automatic methods 

are useful in that they do not require the user to provide information to the tool to successfully 

reason about the system under analysis. However, manual methods that rely on user input may 

provide better results if the user provides information about the design and overall goals of the 

system that the analysis tool my not be able to infer. The following sections will describe some 

automatic and manual methods for performing compositional reasoning. 

Automatic Reduction of the Transition Relation 

Automatic methods for decomposing a problem are useful because they do not require 

the user to provide information to the tool. These methods exploit the structure of the underlying 

model, such as OBDDs, that the model is represented in.  
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One technique [29] partitions the transition relations of a logical system into multiple 

smaller transition relations, rather than a larger single one. Generally, the time necessary to 

analyze a transition relation grows exponentially with linear increases in its size, thus, very large 

relations can be difficult to analyze. This technique will represent the system’s transition relation 

with multiple smaller ones, which are easily analyzed separately, and then compose those results 

to provide a result for the entire system. A similar approach, lazy parallel composition [30], 

composes a set of restricted transition relations that represent accurate global system behaviors 

for important states, but may not represent accurate behaviors for unimportant states. These 

restricted transition relations can be made to be much smaller, and thus, mitigate state-space 

explosion.  

Contract-Based Reasoning 

Contract-Based reasoning [31] is a manual approach in which the user reasons about the 

components of the system and then uses proven properties to construct an argument about the 

global system. This approach requires the user to reason about the components of a system using 

component based analysis. One advantage of contract-based reasoning is different verification 

approaches may be used to verify the components, and then, the results can be combined to 

reason about the whole. Figure 1 shows a simple toy example containing components A, B, and 

C. 



www.manaraa.com

10 
 

 

 

Figure 1 - A Toy Compositional Proof Example 

Suppose component A was verified using model checking, component B was verified 

using theorem proving, and component C was verified using traditional (test-based) approaches. 

Model checking of component A established that if the input to A is less than 20, it will always 

produce an output that is less than two times the input. This analysis reflects assumptions (or 

preconditions) made on the environment that A operates within and a guarantees (or 

postconditions) that it provides to that environment. The combination of the assumptions and 

guarantees associated with a component are collectively referred to as a contract. The contract 

for components A, B, C, and the system described in Figure 1 are in Table 1.  

Table 1 – Assumptions and Guarantees for the Toy Example in Figure 1 

Component Assumptions Guarantees 
A InputA < 20 OutputA < 2 * InputA 
B InputB < 20 OutputB < InputB + 15 
C None OutputC = InputC1 + InputC2 

System InputSystem < 10 OutputSystem < 50 
 

In contract-based reasoning it is necessary to verify not only that the system meets its 

guarantees (the global specification) but also that it calls each component in a way that satisfies 

its assumptions (i.e. it is used in a way that does not violate the conditions of the component 
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analysis). Hence, each component assumption and system guarantee become proof obligations. 

These proof obligations are colored red in Table 1. However, because the components are 

verified we can make assumptions about their behavior. We assume each component will meet 

its stated guarantees. Similarly, we can also assume that the system assumptions also hold. These 

assumptions are colored in blue in Table 1 and are enforced in the analysis of the aforementioned 

proof obligations. 
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CHAPTER 3. RELATED WORK 

 Previous work in the area of contract-based reasoning focuses on the use of formal 

methods techniques to perform the reasoning. As mentioned earlier, the AGREE framework 

performs assume-guarantee reasoning over models written in the AADL language. The 

architectural aspects of a system are expressed in AADL in the Open Source AADL Tools 

Environment [32] (OSATE) and AGREE provides a mechanism to capture the behavioral 

aspects of each component, including the assumptions and guarantees each component requires 

and provides. AGREE then performs assume-guarantee reasoning by translating the behavioral 

aspects of each component in a given system into an equivalent Lustre model. The component 

guarantees and system assumptions are assumptions for the reasoning engine and the component 

assumptions and system guarantees are proof obligations. 

 Similar to AGREE, the Othello Contracts Refinement Analysis [33] (OCRA) tool 

performs compositional reasoning over systems described in the OCRA System Specification 

language (OSS) [34], a textual format unique to the OCRA tools. OCRA allows users to model 

hybrid and discrete time systems. OCRA targets the NuXMV [35] reasoning engine for discrete 

time systems and the HyCOMP [36] analysis tool for hybrid systems. Similar to the AGREE 

tool, it also performs assume-guarantee reasoning of discrete time and hybrid systems. 

 Frama-C [37], a C source code analysis framework, utilizes assume-guarantee reasoning 

as part of its abstract interpretation [38] based Value analysis [39] plugin. The tool provides an 

option to use user specified contracts (written in the ANSI/ISO C Specification Language [40]) 

for any called function. Similarly, the SPARK 2014 [41] toolset provides a utility, gnatprove 

[42], which performs a similar analysis to Frama-C, which is based on abstract interpretation and 

utilizes assume-guarantee reasoning for subprograms. 
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 SIMPAL extends the previous work by providing the following capabilities: 

 Assume-guarantee compositional reasoning of programs written in an imperative style 

powered by model checking. AGREE and OCRA operate in a synchronous dataflow 

environment. Frama-C [37] and SPARK [41] perform assume-gaurantee reasoning using 

abstract interpretation. 

 Performs viability analysis of source code, which is described later in this document. 
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CHAPTER 4. APPROACH 

The SIMPAL tool allows users to specify a program constructed from existing software 

and custom functionality and use formal methods to reason about whether the existing 

components were correctly used and whether the constructed program behaves as intended. 

SIMPAL is implemented in Xtext and uses a domain specific language called Limp (a 

portmanteau of Lustre Imperative) to capture the specification of a new program. 

As the user writes the program the editing environment will identify errors (syntax, type-

checking, unreferenced variables, incorrect contracts) for the user to fix in real-time. This 

ensures that the new program will interface correctly with the existing components as they are 

defined. Once the user has written a program that passes all of the cursory checks the user can 

then analyze the model using model checking. In this analysis the Limp specification is 

translated into an equivalent representation in the Lustre language. This Lustre representation is 

based on the control flow graph (CFG) of the original Limp specification and is executed as a 

state machine. Execution of the program is mapped across multiple Lustre time steps, one for 

each basic block in the CFG. The artifacts of the translation process are shown in Figure 2. 

 

Figure 2 - Analysis internal and external artifacts 
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System and component contracts are gathered during translation and captured in the final 

Lustre model. These contracts are used to generate properties to be checked using the JKind [10] 

model checking tool. Proof violations are reported back to the user as counterexamples, a 

sequence of input assignments in the program that violate the system and component contracts. 

Limp Specification Language 

The Limp language is a domain specific language designed for specifying programs 

constructed from existing components. Limp was designed to target the Lustre analysis language, 

yet unlike Lustre, it supports control flow constructs (if, while, for, break, continue, return), 

imperative execution semantics (allowing variables to be assigned more than once) and a 

property specification language designed for contract based reasoning. The full grammar for the 

Limp language can be found at the SIMPAL Github repository grammar page [43]. 

Motivating Example 

Example 2 shows a Limp specification of a program that accepts a record type named 

File and data to write to it. It returns a File record. In the context of this program a File is an 

abstract data object that contains fields open, writes, and data which refer to different 

characteristics of the file necessary to write to it. There is a constant MAX_WRITES which 

describes how many times a File object can be written as well.   

There is an external procedure writeFile that accepts a File record and data and produces 

a File record that has the data written to the data field. The writeFile procedure has one 

precondition. This precondition pre1 requires that the file to be written to is open. It has a single 

postcondition post1 that the file_out File record is the same as file_in, except that the writes field 

has been incremented by 1 and the data in the file is assigned to the data input argument.   
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Finally the main procedure has one input argument and one output argument. The input 

is data to be written to the file. The output is a boolean that represents whether or not the file 

object was written successfully. This procedure modifies a global File record named file. The 

procedure has a single postcondition named post1 (line 22 of Example 2). It states the procedure 

will always be successful. In addition the main procedure has a precondition, pre1 (line 21 of 

Example 2) that expects the file to be open prior to executing the procedure. Together pre1 and 

post1 form the contract for this procedure, stating that if the global variable File is open, the 

procedure will always end successfully. 

1 
2 
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type record File = { 
  open : bool, 
  writes : int, 
  data : int 
} 
 
global file : record File 
 
constant MAX_WRITES : int = 10 
 
external procedure writeFile(file_in : record File, data : int)  
  returns (file_out : record File) 
attributes { 
  precondition pre1 = file_in.open; 
  postcondition post1 =  
    file_out == file_in{writes := file_in.writes + 1}{data := data}; 
} 
 
procedure main(data : int) returns (success : bool) 
attributes { 
  precondition pre1 = file.open; 
  postcondition post1 = success; 
} 
statements { 
  if(file.open) then { 
    while(file.writes < MAX_WRITES) { 
      file = writeFile(file, data);  
    } 
    success = true;  
  } else { 
    success = false; 
  } 
} 

Example 2 - A simple File writing program 
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This example highlights several components of a Limp specification. In this case the 

main procedure represents a new software program, while the external procedure writeFile 

represents the existing component to be reused. For the program to work correctly it is necessary 

to establish that the preconditions on the external procedure writeFile are preserved by the 

system and that the postconditions of the new program are upheld by both the components and 

glue-code. 

Limp Type System 

The Limp type system is similar to that of the Lustre language. This was an intentional 

decision made because the analysis target of Limp specification is the Lustre language and the 

expressive capabilities of the target language limit the expressive capabilities of the source 

language. For this reason the Limp type system is a minor extension of the Lustre type system. 

Types that can be described in Limp are: 

 Natives (boolean, integer, real) 

 Arrays 

 Records 

 Strings  

 Abstract 

The type system is fully compositional and composite types may contain other composite 

types. String and Abstract types are not present in Lustre and as such we have limited capacity 

for reasoning over them. During the translation from Limp to Lustre these types are abstracted 

into simpler representations and semantic information is lost. These transformations are done at 

the Limp level and are covered in Section entitled “Limp to Limp Transformations.” 
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Functions 

The Limp specification language distinguishes between a Function call and a Procedure 

call. A function is used as a macro; it does not contain state, read or modify global variables, or 

allow users to specify preconditions, postconditions, uses or defines specifications. Further, 

functions are only allowed to return a single value, and are not allowed to assign any variable 

more than once. Control flow elements such as loops and conditional statements are also not 

allowed. In Example 3 below, lines 1-4 demonstrate the declaration of a local function that is 

called on line 21, and line 6 demonstrates the declaration of an external function that is called on 

line 23. 
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function increment(in1 : int) returns (out : int) 
equations { 
  out = in1 + 1; 
} 
 
external function decrement(in1 : int) returns (out : int) 
 
procedure main (a : bool) returns (x : int) 
var { 
  q : int; 
} 
attributes { 
  postcondition post1 = x == 10; 
} 
statements 
{ 
  q = 0; 
  x = 0; 
  for(q=0;q<10;q=q+1;) { 
    if a then { 
      x = increment(x); 
    } else { 
      x = decrement(x); 
    } 
  } 
} 

Example 3 - A Limp program containing local and external functions 

Local Procedures 

Local procedures are the main computational element in Limp. They capture the inputs 

and outputs of the program being specified, the system level preconditions and postconditions, 
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and existing components that are invoked in the program through external procedure calls. 

Formal analysis is always considered through the entry-point of a local procedure. The inputs, 

locals and outputs of a local procedure define the state that is tracked in the compositional 

analysis. The syntax of a local procedure definition can be found in lines 19-33 of Example 2. 

External Procedures 

External procedures represent an existing program that is invoked via a procedure call 

from within a local procedure. External procedures can be used to represent a computational 

element. Similar to a local procedure, the user can specify the preconditions and postconditions 

that the external procedure is expected to satisfy. In addition, the user can specify the global 

variables (or portions of global variables) that are read and written by the external procedure. 

This allows for precision in our analysis of programs. The syntax of an external procedure 

definition can be found in lines 11-17 of Example 2. 

Global Variables 

Limp supports global variables of any valid Limp type. These variables can be read and 

written by both external and local procedures. 

Contract Specification 

Limp allows for the specification of a contract (preconditions and postconditions) for 

both local and external procedures. Further, it allows for the specification of use/define sets for 

global variables as well.  

Local Procedure Contracts 

Local procedures are the main computational element in Limp. Formal analysis is 

performed using a local procedure as the entry point for analysis. Considering this, preconditions 
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and postconditions assigned at the level of a local procedure have a very distinct meaning. 

Preconditions are assumed by the analysis to be true and postconditions become proof 

obligations to be checked at the termination of the program. In Example 2 the local procedure 

main has one precondition and one postcondition. This means that the analysis assumes that all 

initial assignments to the global variable file will have the field open set to true. At the 

completion of the program specified we expect the final variable assignments to satisfy the 

postcondition post1. If this is not the case the analysis will identify execution traces that violate 

each property. 

External Procedure Contracts 

External procedures are used to represent external computation. Like a local procedure, 

an external procedure has preconditions that its inputs are expected to satisfy and postconditions 

that its outputs will satisfy.  However, when invoked from another program the roles of 

preconditions and postconditions are reversed. A component postcondition can be assumed to be 

satisfied by the component (verification that the actual component satisfies the postcondition is 

up to the provider) but only if its preconditions are met. Therefore all component preconditions 

become proof obligations.  

In Example 2 the external procedure writeFile has a precondition pre1 that must be 

satisfied by the caller. This means that the global variable file (the argument provided to the call 

to external procedure writeFile) must have the field open set to true. The analysis performed by 

this tool will verify that all preconditions are satisfied from the calling context. When 

considering the behaviors of the writeFile external procedure from within the main local 

procedure, we assume that the component meets its contract and assume that it satisfies its stated 

postconditions. Therefore when writeFile is completed we expect it will return a File record with 



www.manaraa.com

21 
 

 

the writes field incremented, the data field written to the value provided to the procedure, and the 

remaining elements set to the same values as the input File record, per postcondition post1. 

Uses and Defines Specifications 

External procedures may interact with global variables and the uses and defines 

mechanisms exist to specify this interaction. Limp provides specification constructs to precisely 

specify how a global is read or written from a local or external procedure. The uses construct is 

used to specify which portions of a global variable can be read by a procedure and similarly the 

defines construct is used to specify which portions of a global variable a procedure can write to. 

If a global variable is of a composite type (record or array) the user can precisely specify each 

element that is used or defined. This allows for the precise specification of how globals are read 

and written by the program. Example 4 shows an alternate version of the program from Example 

2, with modifications made to the external procedure writeFile, which now utilizes the uses and 

defines construct. The syntax of the specification is shown in lines 16-18. 
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type record File = { 
  open : bool, 
  writes : int, 
  data : int 
} 
 
global file : record File 
 
constant MAX_WRITES : int = 10 
 
external procedure alternate_writeFile(data : int) returns () 
attributes { 
  precondition pre1 = file.open; 
  postcondition post1 = file.writes == (init file.writes) + 1; 
  postcondition post2 = file.data == data; 
  uses file; 
  defines file.writes; 
  defines file.data; 
} 
 
procedure main(data : int) returns (success : bool) 
attributes { 
  precondition pre1 = file.open; 
  postcondition post1 = success; 
} 
statements { 
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  if(file.open) then {
    while(file.writes < MAX_WRITES) { 
      alternate_writeFile(data);   
    } 
    success = true;  
  } else { 
    success = false; 
  } 
} 

Example 4 - An alternate version of Example 2 

In Example 4 the external procedure alternate_writeFile directly writes the global 

variable file rather than it being provided as an input argument. In addition to minor changes to 

the preconditions and postconditions to reflect this change, there are also uses and defines 

specifications. This specification shows that the alternate_writeFile reads the global variable file 

(the entire variable) and writes to its writes and data fields. This information is used in the 

formal analysis approach to preserve the frame condition; that is, it informs the analysis to only 

vary the portions of a global variable that an external procedure will change, rather than 

modifying the entire contents. Without this capability the analysis would require the user to 

explicitly state the frame condition, which is tedious for large data structures. 

Translation to Lustre 

The translation to Lustre is accomplished through a multi-step process. First the Limp 

specification is transformed to remove unsupported expressions to make the final Limp 

specification closer in expressive capability to the Lustre language. Next the transformed Limp 

specification is converted into a control-flow graph (CFG) representation. Then the CFG 

representation is simplified through a series of CFG-to-CFG transformations. Finally the 

simplified CFG representation is translated into a state-machine representation in Lustre. This 

state-machine executes the Limp program over multiple Lustre steps, executing exactly one node 

of the CFG on each computation step. 
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Limp to Limp Transformations 

The first part of translating Limp specifications to Lustre is transforming the user-

specified Limp to a semantically equivalent form that can more easily translated into Lustre. The 

following sections describe each Limp transformation that is used in SIMPAL. 

Remove Unspecified Constants 

The Limp language allows for users to specify constants that are not assigned a literal 

value. This means that the value of the constant could be any valid assignment for the constant’s 

type, but it does not change for any particular analysis run.  
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constant UNSPECIFIED_CONSTANT : int
 
procedure main() returns (x : int) 
attributes { 
  postcondition post = x >= UNSPECIFIED_CONSTANT; 
} 
statements { 
  x = 0; 
  while(x < UNSPECIFIED_CONSTANT) { 
    x = x + 1; 
  } 
} 

Example 5 - A small program utilizing an Unspecified Constant 

Unspecified constants are translated into External Functions with zero inputs. Eventually 

these are translated into Lustre uninterpreted functions with zero inputs during the translation 

from the CFG to Lustre. The transformed version of the program found in Example 5 is shown in 

Example 6 below. 
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external function UNSPECIFIED_CONSTANT () returns (out : int) 
 
procedure main () returns (x : int) 
attributes { 
  postcondition post = x >= UNSPECIFIED_CONSTANT (); 
} statements 
{ 
  x = 0; 
  while x < UNSPECIFIED_CONSTANT () 
  { 
    x = x + 1; 
  } 
} 
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Example 6 -The program in example 3 after removing unspecified constants 

Rename Lustre Keywords 

Lustre language keywords that appear in Limp specifications would cause conflicts when 

the user attempts to run the analyzer. This pass renames all conflicting identifiers in a Limp 

specification. 

Remove ElseIfs 

ElseIf statements are used to avoid deep nesting of If-Then-Else statements. They are 

simply syntactic sugar provided to the user for convenience. This transformation will remove 

ElseIf statements by replacing them with nested If-Then-Else statements. This is done to 

normalize the control flow structure prior to creating the CFG representation. 

Remove Strings 

Strings are not supported by the Lustre language. However the Limp language provides 

some support for strings. Users can write string literals, and equate two string values, but 

concatenation, evaluating substrings and similar operations are not supported. Prior to 

translating to Lustre each string is replaced with a unique integer literal. All operations over 

strings are replaced with semi-equivalent operations over integers. 
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procedure main(x : string, a : bool) returns (y : string)
attributes { 
  precondition pre1 = x <> "ABC"; 
  postcondition post = y <> "ABC"; 
} 
statements { 
  if a then { 
    y = x;  
  } else { 
    y = "ABC"; 
  } 
} 

Example 7 - A simple program demonstrating use of strings 

Example 7 is transformed into the program found in Example 8. 
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/# 
Integer to String mapping :  
  0 ‐> "ABC" 
#/ 
 
procedure main (x : int, a : bool) returns (y : int) 
attributes { 
  precondition pre1_ = x <> 0; 
  postcondition post = y <> 0; 
} statements { 
  if a then { 
    y = x; 
  } else { 
    y = 0; 
  } 
} 

Example 8 - The transformed version of Example 7 

Normalize Control Flow 

The last step before creating the CFG representation of the Limp specification is to 

normalize control flow. This means all if-then-else, while, for, break, continue, and return 

constructs are normalized into a set of labels and goto statements. This “spaghetti-code” is 

difficult to read for humans, but it greatly simplifies the creation of the CFG. Example 9 shows a 

simple program and Example 10 shows its representation in Limp after normalizing control flow. 
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procedure main (a : bool, b : bool) returns (x : int)
var { 
  iterations : int; 
} 
attributes { 
  postcondition post1 = iterations > 0; 
} 
statements 
{ 
  x = 0; 
  iterations = 0; 
  if a then { 
    while(x < 10) { 
      x = x + 1; 
      iterations = iterations + 1; 
    } 
  }  
} 

Example 9 - A sample program utilizing control flow in Limp 
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procedure main (a : bool) returns (x : int)
var { 
  iterations : int; 
} 
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attributes { 
  postcondition post1 = iterations > 0; 
} statements 
{ 
  x = 0; 
  iterations = 0; 
  goto label_0 when a; 
  goto label_1; 
 
  label label_0; 
 
  label label_3; 
  goto label_4 when x < 10; 
  goto label_5; 
 
  label label_4; 
  x = x + 1; 
  iterations = iterations + 1; 
  goto label_3; 
 
  label label_5; 
  goto label_2; 
 
  label label_1; 
  goto label_2; 
 
  label label_2; 
 
  label end; 
} 

Example 10 -Example 9 with normalized control flow 

Transforming Finalized Limp to a Control Flow Graph (CFG) 

The transformed Limp file has normalized control flow. This format contains only labels, 

goto, and assignment statements. From this representation it is straightforward to identify the 

basic blocks that make up the CFG nodes, as each basic block begins with an assignment 

statement and ends with a goto statement. The arcs of the CFG are constructed by following the 

goto statements. 

Identifying Basic Blocks 

A basic block is defined as a sequence of consecutive instructions that are always 

executed from beginning to end without branching execution. Basic blocks are determined by 

walking through the program, beginning a block on an assignment statement, and ending it once 
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a goto statement or label statement is encountered. Once a goto statement is encountered a new 

basic block begins with the first assignment statement in the resulting label. 

Constructing the CFG 

After the basic blocks of the program are identified, the CFG captures execution of the 

program as a set of basic blocks as serve as nodes connected by arcs that dictate their execution 

order. The CFG is constructed by walking through the normalized Limp specification from top to 

bottom, connecting the basic blocks via the unconditional and conditional goto statements 

encountered. 

The program in Example 4 is translated into the CFG shown in Figure 3. The basic 

blocks of the program appear in the nodes of the CFG, labelled 0 – 6. 

 

Figure 3 - The Control Flow Graph (CFG) for the program in Example 4 

Generating Unique Variable Instances 

The Lustre language only allows a variable to be assigned once in a given node. This 

presents problems when translating from Limp to Lustre because Limp does not have such 
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restrictions. This is solved by applying a transformation that gives each variable inside of a basic 

block have a unique name. Figure 4 shows a simple basic block with variables assigned more 

than once. 

 

Figure 4 - A simple basic block with variables x and y assigned twice 

In this example, we create new variables for each instance of variables x and y. This 

allows us to create a Lustre compliant representation while preserving the semantics of the block. 

The example Figure 4 becomes the basic block in Figure 5. 

 

Figure 5 – The example in Figure 4 with unique naming 

The instructions inside of this block are now Lustre compliant and the translation of them 

into Lustre is now trivial. 

Translating the CFG representation to Lustre 

Once the CFG representation has been created, and all of the basic blocks contained 

within it have been transformed to contain only unique variables, it is ready to be translated to 

Lustre. The translation is a multi-step process that must: 

 Identify the entry point for the analysis 
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 Determine the state and global variables in the program 

 Translate the referenced type, constant, function, and external procedure declarations 

 Generate a node for each basic block in the CFG 

 Generate a node that executes the CFG (called the CFG Director node) 

Identifying the Main Local Procedure 

In the SIMPAL framework analysis of a program always happens through the execution 

of a local procedure. This local procedure defines the input, output, and global variables that a 

program will read and write. If a program does not contain a local procedure there is no entry 

point for the analysis and thus an error will be reported by the editing environment to the user. If 

a program contains multiple local procedures then there are multiple potential entry points for 

analysis. In the case of multiple local procedures the following rule is used to identify the 

analysis entry point: if a local procedure is named “main” then it is the entry point for analysis, 

otherwise the last local procedure in a file is chosen as the entry point. 

Identifying the State and Global Variables 

Once the local procedure that is used as the entry point for analysis is identified, its 

inputs, locals, and outputs are captured in a global record structure that represents the state of the 

program for analysis. Similarly, the global variables that are read and written by the program are 

stored in a second global record structure. These global records are typed as user named types so 

they can be easily referred to in the translation. 

Translation of Types, Constants, Functions, and External Procedures from Limp to Lustre 

Limp declarations must be translated into Limp. For most of the Limp constructs this is a 

straightforward process. Translating External Procedures is a more complicated as they represent 

some additional features that are not native to the target Lustre language. The following sections 

describe the translation from Limp to Lustre on each type of Limp construct. 
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Types 

The Limp type system is very similar to the Lustre type system. The only type extensions 

to the Lustre system are String and Abstract types, both of which are removed with 

preprocessing transformations. As a result, all the types contained in the model at the time of 

translation should be trivial. The complete type mapping is shown in Table 2. 

Table 2 – Limp to Lustre type mapping 

Int → Int 
Bool → Bool 
Real → Real 
String1 → Int 

Abstract1 → Int 
Array → Array2 

Record → Record2 
 

1String and Abstract types are removed during preprocessing 
transformations and replaced with Integer types and operations. 

 
2Composite types in Limp are mapped to equivalent Lustre types and 
subtypes are recursively mapped into Lustre types, terminating when 

a primitive type is encountered. 
 

Constants 

The earlier preprocessing pass, Remove Unspecified Constants, ensures that all constants 

remaining in the model after transformation are specified. These remaining constants are then 

easily translated into a Lustre constant. For the constant on line 9 of Example 2, the syntax in the 

Limp and Lustre representations is exactly the same. 

Functions 

Local functions in Limp have similar behavior as Lustre nodes, except they do not 

contain state. They are simply translated into into equivalent Lustre nodes with some very minor 



www.manaraa.com

31 
 

 

minor syntactical differences. The local function increment from Example 3 is shown below in 

Example 11. 

1 
2 
3 
4 

node increment(in1 : int) returns (out : int);
let 
  out = (in1 + 1); 
tel; 

Example 11 - Lustre node representing the increment local function from Example 3 

Procedures 

External procedures and local procedures that aren’t the entry point of the analysis are 

translated into uninterpreted functions in Lustre. One aspect that must be captured in this 

translation is the portions of global variables that each procedure reads and writes, which is 

defined by the uses and defines specification. For the alternate_writeFile procedure on line X of 

Example 4, the resulting translation can be found in Example 12 below. 
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function alternate_writeFile(
  data : int; 
  _file_IN : File 
) returns ( 
  _file_writes_OUT : int; 
  _file_data_OUT : int 
); 

Example 12 – Lustre uninterpreted function representing external function alternate_writeFile 
from Example 4 

The external procedure alternate_writeFile uses, or reads, the global variable file. This 

additional argument is added to the inputs of the uninterpreted function that represents 

alternate_writeFile in Lustre as shown on line 3 of Example 12. It also writes to the writes and 

data fields of the global variable file. These fields are added as outputs to the uninterpreted 

function, shown in lines 5 and 6 of Example 12. As we process statements from the original 

program, we must update our procedure calls to reflect this new signature. This is discussed in 

the section entitled “Generating Lustre nodes from Basic Blocks.” 
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Generating Lustre nodes from Basic Blocks 

Once the state and global record types are defined the basic blocks can be seen as a 

sequential list of assignments that will update the state and global record types. This is captured 

as a Lustre node that accepts a record of the current state and global record types. In addition the 

preconditions and postconditions of any called procedure must be aggregated and passed as 

output arguments to be used in later analyses. Finally the uses and defines specifications  must be 

handled at the site of the external procedure call to ensure only the specified portions of a global 

variable are read and written to. The full translation of basic block 3 of the CFG in Figure 3, is 

shown below.  
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node main_block_3( 
  trigger : bool; 
  state_in : main_state_type; 
  globals_in : main_global_type 
) returns ( 
  state_out : main_state_type; 
  globals_out : main_global_type; 
  precondition : bool; 
  postcondition : bool 
); 
var 
  data_0 : int; 
  success_0 : bool; 
  file_0 : File; 
  _file_IN : File; 
  _file_writes_OUT : int; 
  _file_data_OUT : int; 
  file_1 : File; 
  file_2 : File; 
  data : int; 
  success : bool; 
  file : File; 
  alternate_writeFile_pre1_ : bool; 
  alternate_writeFile_pre1__prop : bool; 
  alternate_writeFile_post1 : bool; 
  alternate_writeFile_post2 : bool; 
let 
  data_0 = state_in.data; 
  success_0 = state_in.success; 
  file_0 = globals_in.file; 
  alternate_writeFile_pre1_ = file_0.open; 
  alternate_writeFile_pre1__prop = (trigger => alternate_writeFile_pre1_); 
  _file_IN = file_0; 
  _file_writes_OUT, _file_data_OUT = alternate_writeFile(data_0, _file_IN); 
  file_1 = file_0{writes := _file_writes_OUT}; 
  file_2 = file_1{data := _file_data_OUT}; 
  alternate_writeFile_post1 = (file_2.writes = (file_0.writes + 1)); 
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  alternate_writeFile_post2 = (file_2.data = data_0);
  data = data_0; 
  success = success_0; 
  file = file_2; 
  state_out = main_state_type {data = data; success = success}; 
  globals_out = main_global_type {file = file}; 
  precondition = (alternate_writeFile_pre1__prop); 
  postcondition = (alternate_writeFile_post1 and alternate_writeFile_post2); 
  ‐‐%PROPERTY alternate_writeFile_pre1__prop; 
tel; 

Example 13 - Lustre node representing basic block 3 from Example 4 

Capturing the State and Global Record Variables 

The state and global record types are provided as inputs to a basic block and as outputs. 

The input values represent the state prior to the execution of the basic block, and the outputs are 

their modified versions after the execution of the basic block.  

The inputs are unpacked from the record types as local variables in the Lustre node prior 

to processing any basic block statements. This is done to simplify namespace issues in the 

translation. This is accomplished on lines 28-30 in Example 13.  

Processing preconditions and postconditions 

Preconditions and postconditions must be processed correctly for the analysis to be 

accurate. First, the analysis must instantiate the preconditions and postconditions with variable 

instances from the calling reference. Instantiated preconditions for the call to alternate_writeFile 

are shown on line 31 of Example 13 and its instantiated postconditions are shown on lines 37-38. 

All preconditions must be prepended with an implication containing a triggering signal 

from the node. This signal ensures the preconditions will only be evaluated when the basic block 

is actively being executed by the CFG Director node. This triggering signal is essential to the 

analysis of component preconditions because the Lustre semantics execute the signal on every 

time step and evaluating the property when the block is not active would lead to spurious 

counterexamples. This is shown on line 32 of Example 13. 
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Finally all the preconditions and postconditions are aggregated into a single variable to be 

passed to the CFG Director node. The postconditions are also aggregated. These aggregated 

signals are outputs to the node representing the basic block and are used by the CFG Director 

node for analysis. The aggregated signals are captured on lines 44 and 45 of Example 13. 

Processing the Uses and Defines specifications 

When an external procedure is called and it contains uses and defines specifications, 

several things must occur during the translation to ensure that it is handled correctly. First, the 

current value of the global variables that are used by an external procedure call must be passed 

into the uninterpreted function that represents the external procedure to be called. Just prior to 

the call, the portions of the global variables used by the procedure are extracted to local 

variables. These local variables are provided as arguments to the uninterpreted function that 

represents the procedure. In Example 13, this local variable is assigned in line 33 and appears as 

an input to the uninterpreted function alternate_writeFile in line 34. 

Similarly the portions of the global variable that are written by the procedure are 

provided as outputs of the uninterpreted function. These variables must be captured and then 

merged into the global variable after execution of the uninterpreted function. Variables capturing 

the updated versions of writes and data fields of the global variable file from the external 

procedure call are written on line 34 of Example 13 as variables _file_writes_OUT and 

_file_data_OUT. These variables are then merged into the previous version of the global 

variable file on lines 35 and 36. This ensures that the file variable only changes aspects of the 

variable that are called out in the defines specification for the external procedure. 
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Generating the CFG Director Node 

Once the basic blocks, or nodes of the CFG, are captured as Lustre nodes, the next step is 

to create a node that will drive the execution of the CFG as a state machine. This node is 

responsible for initializing the state and global record variables, calling the various nodes (or 

basic blocks) of the CFG in the correct order to successfully emulate the program, threading the 

state and global variable records through the execution of the CFG, and setting up system level 

analyses including contract verification, reachability, and viability analysis. Example 14 shows 

the CFG director node for the program in Example 4. 
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node main( 
  data__in : int; 
  success__in : bool; 
  file__in : File 
) returns ( 
  data : int; 
  success : bool; 
  file : File 
); 
var 
  state : int; 
  pre_state : int; 
  init_state : int; 
  final_state : int; 
  state_record : main_state_type; 
  pre_state_record : main_state_type; 
  init_state_record : main_state_type; 
  global_record : main_global_type; 
  pre_global_record : main_global_type; 
  init_global_record : main_global_type; 
  component_preconditions : bool; 
  component_postconditions : bool; 
  main_pre1_ : bool; 
  main_post1 : bool; 
  state_0_is_unreachable : bool; 
  state_0_is_nonviable : bool; 
  state_1_is_unreachable : bool; 
  state_1_is_nonviable : bool; 
  state_2_is_unreachable : bool; 
  state_2_is_nonviable : bool; 
  state_3_is_unreachable : bool; 
  state_3_is_nonviable : bool; 
  state_4_is_unreachable : bool; 
  state_4_is_nonviable : bool; 
  state_5_is_unreachable : bool; 
  state_5_is_nonviable : bool; 
  state_6_is_unreachable : bool; 
  state_6_is_nonviable : bool; 
let 
  ‐‐%MAIN 
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  state = (init_state ‐> 
   (if (pre_state = 0) then 1 else  
   (if (pre_state = 1) then  
      (if file.open then 2 else 6) 
   else  
   (if (pre_state = 2) then  
      (if (file.writes < MAX_WRITES) then 3 else 4)  
   else  
   (if (pre_state = 3) then 2 else  
   (if (pre_state = 4) then 5 else  
   (if (pre_state = 5) then pre_state else  
   (if (pre_state = 6) then 5 else  
   pre_state)))))))); 
 
  pre_state = (init_state ‐> (pre state)); 
 
  init_state = 0; 
 
  final_state = 5; 
 
  init_state_record = (main_state_type {data = data__in; success = false} ‐>  
(pre init_state_record)); 
 
  pre_state_record = (init_state_record ‐> (pre state_record)); 
 
  init_global_record = (main_global_type {file = file__in} ‐>  
(pre init_global_record)); 
 
  pre_global_record = (init_global_record ‐> (pre global_record)); 
 
  state_record,global_record,component_preconditions,component_postconditions = 
((init_state_record, init_global_record, true, true) ‐>  
(if (pre_state = 0) then  
   main_block_0((pre_state = 0), pre_state_record, pre_global_record) else  
(if (pre_state = 1) then  
   main_block_1((pre_state = 1), pre_state_record, pre_global_record) else  
(if (pre_state = 2) then  
   main_block_2((pre_state = 2), pre_state_record, pre_global_record) else  
(if (pre_state = 3) then  
   main_block_3((pre_state = 3), pre_state_record, pre_global_record) else  
(if (pre_state = 4) then  
   main_block_4((pre_state = 4), pre_state_record, pre_global_record) else  
(if (pre_state = 5) then  
   main_block_5((pre_state = 5), pre_state_record, pre_global_record) else  
(if (pre_state = 6) then  
   main_block_6((pre_state = 6), pre_state_record, pre_global_record) else 
(pre_state_record, pre_global_record, true, true))))))))); 
 
  main_pre1_ = ((state = init_state) => file.open); 
  main_post1 = ((state = final_state) => success); 
   
  state_0_is_unreachable = (pre_state <> 0); 
  state_0_is_nonviable = (H(component_preconditions) => (pre_state <> 0)); 
  state_1_is_unreachable = (pre_state <> 1); 
  state_1_is_nonviable = (H(component_preconditions) => (pre_state <> 1)); 
  state_2_is_unreachable = (pre_state <> 2); 
  state_2_is_nonviable = (H(component_preconditions) => (pre_state <> 2)); 
  state_3_is_unreachable = (pre_state <> 3); 
  state_3_is_nonviable = (H(component_preconditions) => (pre_state <> 3)); 
  state_4_is_unreachable = (pre_state <> 4); 
  state_4_is_nonviable = (H(component_preconditions) => (pre_state <> 4)); 
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  state_5_is_unreachable = (pre_state <> 5);
  state_5_is_nonviable = (H(component_preconditions) => (pre_state <> 5)); 
  state_6_is_unreachable = (pre_state <> 6); 
  state_6_is_nonviable = (H(component_preconditions) => (pre_state <> 6)); 
   
  data = state_record.data; 
  success = state_record.success; 
  file = global_record.file; 
   
  assert component_postconditions; 
  assert main_pre1_; 
 
  ‐‐%PROPERTY main_post1; 
  ‐‐%PROPERTY state_0_is_unreachable; 
  ‐‐%PROPERTY state_0_is_nonviable; 
  ‐‐%PROPERTY state_1_is_unreachable; 
  ‐‐%PROPERTY state_1_is_nonviable; 
  ‐‐%PROPERTY state_2_is_unreachable; 
  ‐‐%PROPERTY state_2_is_nonviable; 
  ‐‐%PROPERTY state_3_is_unreachable; 
  ‐‐%PROPERTY state_3_is_nonviable; 
  ‐‐%PROPERTY state_4_is_unreachable; 
  ‐‐%PROPERTY state_4_is_nonviable; 
  ‐‐%PROPERTY state_5_is_unreachable; 
  ‐‐%PROPERTY state_5_is_nonviable; 
  ‐‐%PROPERTY state_6_is_unreachable; 
  ‐‐%PROPERTY state_6_is_nonviable; 
tel; 

Example 14 - CFG Director node for Example 4 

Note to the reader: The H node, used on lines 53,55,57,59,61,63, and 65 of Example 14, 

is a simple boolean predicate that determines if the provided expression has been true for all of 

the program’s execution. It stands for Historically and its Lustre representation is shown below 

in Example 15. It is used for viability analysis to enforce that the the local procedure 

preconditions and called external procedure postconditions are true, a prerequisite for viability.  

1 
2 
3 
4 

node H(signal : bool) returns (holds : bool);
let 
   holds = signal ‐> signal and pre (holds); 
tel; 

Example 15 - The Historically node 

Initializing the State and Global Records 

The state record contains all of the inputs, locals, and outputs of the local procedure being 

used as the entry point for analysis. The state record’s inputs are populated by assigning them to 
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a nondeterminstic input value generated by the JKind model checker. Locals and outputs 

(computed values) are assigned a default value for their type. These default types are shown in 

Table 3.  

Table 3 – Lustre Types mapped to default values 

Int → 0 
Real → 0.0 

Bool → False 
Composite Types → Composed of Primitive Defaults 

 

Line 47 of Example 14 shows the construction of the initial state record for Example 4. 

Once the state is initialized an expression that tracks the previous values of it is also generated. 

These are shown on line 46 of Example 14. 

Global records are constructed similarly, except all globals are always populated with 

nondeterministic input variables. In our analysis we want to consider all potential values of a 

global variable at the beginning of a program, and treating globals in this manner preserves that 

capability. If the user would like to consider a subset of values for a global variable they can 

specify those assumptions as preconditions on the procedure itself. Line 49 shows the 

construction of the initial global record for Example 4. Similar to the state record, the previous 

value of the global record is also tracked, as shown on line 48 of Example 14. 

Constructing the CFG State Machine Expression 

The CFG consists of nodes that are the basic blocks of the program being specified, and 

the arcs consist of transition from basic block to basic block. Some arcs are guarded and have a 

condition that determines whether or not they are taken, others are unconditional. In the CFG 

Director node, each basic block must be executed in the correct sequence to emulate the CFG of 

the program. For the CFG found in Figure 3 (which is computed from Example 4) we must 
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generate equations that keep track of the initial block to be executed, the block currently being 

executed, the previously executed block, and the final block being executed. 

From the CFG in Figure 3 we can see that the initial block to execute is block 0. This is 

reflected on line 43 of Example 14. The block being executed is dependent the previous block 

executed and what conditions, if any, must hold in the previous state and global records. This 

state transition relation is defined on line 41 of Example 14. The previously executed basic block 

is tracked throughout this process and it is derived from the expression found on line 42 of 

Example 14. Finally the final basic block must also be captured. This is useful for knowing when 

the program has terminated and is used when checking postconditions of the overall program. 

Line 44 show the assignment of the final basic block from Figure 3. 

Threading the state and global variables through the CFG execution 

Once the state machine that dictates the execution of the CFG is built the next step in the 

translation is to construct an equation that threads the current state and global variables through 

the calls to the various basic blocks. Similar to the state machine variables that are discussed in 

the previous section, we must track the initial, previous, and current state and global records. The 

generation of the initial value is discussed in the section entitled “Initializing the State and 

Global Records.” The previous value of the state and global records is trivial to compute. They 

are shown on lines 46 and 48 of Example 14, respectively.  

To compute the current value of the state and global records we must identify which 

basic block is currently being executed, call the Lustre node that represents that basic block with 

the previous values of the state and global records, and capture the output of executing that node 

in the current state and global records. The component preconditions and postcondition signals 

are also captured. This is shown on line 49 of Example 14. The reader should note that on the 
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initial state no basic block is called, instead the current values of the state and global vectors are 

set to the initial values, and the component_precondition and component_postcondition signals 

are set to true. 

Generating assertions and proof obligations 

The next responsibility of the CFG Director node is to generate the assertions and proof 

obligations to perform contract reachability, and viability verification. Each type of analysis is 

discussed in detail in the section entitled “Analyses.”  

External procedure postconditions are lifted to the CFG Director node and asserted as 

true. This means that when a component is used the analysis only considers outputs that satisfy 

the external procedure’s postconditions. This is a key principle of contract based reasoning and it 

is discussed further in the section entitled “Generating assertions and proof obligations.” Line 69 

of Example 14 shows the assertion over the external procedure postconditions. Further any 

preconditions found in the entry point local procedure being analyzed are also asserted as true. 

This is another key principle in contract based reasoning. Line 70 illustrates the single 

precondition of Example 4 being asserted in the CFG Director node. 

Preconditions of all external procedures called from the entry point are turned into proof 

obligations inside of the node that represents the basic block (see Example 13, Line 46) from 

which it is called. Additionally all postconditions of the entry point are turned into proof 

obligations (lines 51 of Example 14) and checked (lines 71 of Example 14) when the CFG is in 

its final state, which represents the termination of the program. 

Additional proof obligations representing the reachability and viability analyses are also 

generated and checked as properties. These are discussed in detail in the Reachability and 

Viability sections of this document, respectively. The proof obligations for viability and 



www.manaraa.com

41 
 

 

reachability are generated on lines 52-66 and checked as properties on lines 72-85 of Example 

14. 

Unpacking the state and global records 

The last thing done in the CFG Director node is to unpack the state and global records 

into output variables. This isn’t necessary, but does make it easy to refer to the original program 

variables for interpreting any counterexamples the tool may generate. 

Analyses 

The SIMPAL tool performs three analyses on programs specified in the Limp language: 

contract verification, reachability, and viability. If a system is composed of existing components, 

and only the components’ preconditions and postconditions are known, is it possible to formally 

prove that the new program satisfies its postconditions? Contract verification is an approach to 

answering this question. Further, one might want to reason about the reachability of certain 

portions of the specified program. Reachability analysis in SIMPAL either proves the existence 

of a trace that allows each basic block in the program to be reached or proves that no traces allow 

a basic block to be reached. Lastly the concept of viability is an extension of reachability. 

Viability is reachability under conditions in which all the component preconditions and system 

postconditions are satisfied. Essentially, viability is the reachability of a portion of the program 

under intended conditions. The approach taken by the SIMPAL tool is discussed in the following 

sections. 

Contract Verification 

Contract verification, also known as assume-guarantee reasoning, is a compositional 

reasoning approach that is useful for verifying that a program or system of pre-verified 

components behaves correctly. A contract for a component, or a system, is the set of assumptions 
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(preconditions) it makes on the environment it operates in and the set of guarantees 

(postconditions) that it will provide to the environment it operates in. Contract verification in 

SIMPAL adopts the concept of assume-guarantee reasoning to a program specified in the Limp 

language. 

For the program specified in Example 4, the local procedure main has the following 

contract, comprised of preconditions and postconditions. The precondition pre1 states that prior 

to the execution of the program the file.open field is assumed to be set to true. The postcondition 

post1 asserts that the success variable will always be true. This is shown in Table 4. 

Table 4 – Contract for the main local procedure in Example 4 

Preconditions: 
  precondition pre1 = file.open; 
Postconditions: 
  postcondition post1 = success; 

 

This program makes a single call to an external procedure, which is to 

alternate_writeFile. That external procedure has one precondition and two postconditions. The 

precondition pre1 requires the file.open field to be true of the global variable file prior to calling 

the external procedure. The first postcondition specifies that the writes field of the global 

variable file will be one greater than the value of it before executing the procedure. The second 

postcondition specifies that the data field of the global variable file will be equal to the procedure 

input data after execution. This contract is shown in Table 5. 

Table 5 – Contract for the external procedure alternate_writeFile 

Preconditions: 
  precondition pre1 = file.open; 
Postconditions: 
  postcondition post1 = file.writes == (init file.writes) + 1; 
  postcondition post2 = file.data == data; 
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In the analysis performed by SIMPAL, we want to verify that all of the components are 

called with variables that satisfy their respective preconditions. This proves that the specified 

program always honors the preconditions of the external procedures it invokes. Every basic 

block contains proof obligations that check whether procedure calls satisfy the stated 

preconditions of the called procedure. This is shown on line 46 of Example 13. The triggering 

signal ensures the analysis only evaluates the property when the basic block is actively being 

executed.  

Secondly we want to verify that the new program always honors its postconditions. These 

properties are specified inside of the CFG Director, as discussed in the section entitled 

“Generating the CFG Director Node.” These properties must only be checked when the program 

has terminated. A program is terminated when the current basic block being executed is the final 

basic block of the CFG. Line 53 of Example 14 shows the postcondition of the main local 

procedure. The reader may note that the expression is prepended with an implication (state = 

final_state.) This makes the property trivially true when the state is not the final state which 

prevents spurious counterexamples. 

To correctly perform contract verification assumptions must be made to only consider 

inputs that satisfy the entry point’s preconditions and the components postconditions. Since 

nothing is known about the internals of the called procedures, each procedure’s postconditions 

can be assumed to be true. It is assumed that the specifier has already verified that each 

component satisfies its postconditions. This analysis makes no attempt to verify the internals of 

any called procedure. Line 49 of Example 14 captures all of the component postconditions of the 

basic block being executed. It is not necessary to reason about individual postconditions, thus 

they are aggregated into a single signal.  
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Additionally we must assume that the preconditions of the entry point are true. This 

occurs on line 70 of Example 14. The reader may note that this precondition is prepended with 

an implication (state = init_state). This makes the assertion only hold for the initial state of the 

program, which is prior to any execution of program statements. 

The File Example 

Example 4 demonstrates a simple example in which the local procedure main, specifies a 

program in which a global object, file, is written repeatedly until the MAX_WRITES value has 

been reached. In our analysis of this program we must verify that all calls to the external 

procedure alternate_writeFile satisfy its precondition, and that the system always satisfies its 

single postcondition. The results of this analysis are shown in Figure 6 below. 

 

Figure 6 - Contract verification analysis results of Example 4 

As we can see the postcondition of local procedure main, called main_post1 is valid. 

Similarly the precondition of external procedure alternate_writeFile, called 

alternate_writeFile_pre1_prop is also valid. 
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Note to the reader: The remaining properties shown in Figure 6 relate to the reachability 

and viability of each basic block in the original program. These are discussed in-depth in 

Reachability and Viability sections of this document. 

Modified File Example 

For the purposes of demonstrating an invalid property we introduce a modified version of 

Example 4 in which the local procedure main’s precondition is commented out. This allows the 

global variable file’s open field to be both true and false in the analysis. Example 16 shows this 

change to Example 4 on line 24. 
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type record File = { 
  open : bool, 
  writes : int, 
  data : int 
} 
 
global file : record File 
 
constant MAX_WRITES : int = 10 
 
external procedure alternate_writeFile(data : int) 
  returns () 
attributes { 
  precondition pre1 = file.open; 
  postcondition post1 = file.writes == (init file.writes) + 1; 
  postcondition post2 = file.data == data; 
  uses file; 
  defines file.writes; 
  defines file.data; 
} 
 
procedure main(data : int) returns (success : bool) 
attributes { 
  //precondition pre1 = file.open; 
  postcondition post1 = success; 
} 
statements { 
  if(file.open) then { 
    while(file.writes < MAX_WRITES) { 
      alternate_writeFile(data);   
    } 
    success = true;  
  } else { 
    success = false; 
  } 
} 

Example 16 - A modified version of Example 4 
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Performing contract verification on this example yields the results shown in Figure 7. 

 

Figure 7 – Contract verification analysis results of Example 16 

The precondition of the external procedure alternate_writeFile, pre1, is still valid. This is 

because the main program only calls this external procedure when the global variable file’s open 

field is true, thus always satisfying the precondition. However now we see that the local 

procedure’s main postcondition, post1, is invalid. This is because the If branch (lines 27-30 of 

Example 16) of the If-Then-Else statement is never entered. It is inside this branch, on line 30, 

that the success variable is set to true. Therefore the postcondition post1 is not satisfied in 

circumstances when the global variable file’s open field is false. Similar to Figure 6, Figure 7 

contains properties related to reachability and viability that are explained in later in the 

document. 

Reachability 

Reachability analysis in the SIMPAL framework is a very simple analysis that generates 

properties that attempt to prove that a given basic block in the CFG is not reachable. For 
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Example 4, the CFG is shown in Figure 3. A basic block is reachable if it can be executed. For 

each basic block in the CFG, we generate a property that asserts it cannot be reached. Lines 52, 

54, 56, 58, 60, 62, and 64 of Example 14 demonstrate the generated reachability properties for 

Example 4. 

These properties attempt to prove that each basic block is unreachable. If the property is 

proven, then the basic block is unreachable. However, if the property fails, the accompanying 

counterexample trace will demonstrate at least one sequence of inputs that will lead to the 

execution of that block. 

Reachability of the File Example 

In Example 4, the local procedure main’s precondition asserts that the global variable 

file’s open field is always true. Careful inspection shows that the Else branch of the If-Then-Else 

is never executed if the open field is never true. The analysis results shown in Figure 6 show that 

the basic block 6 (the block that executes the Else branch of the If-Then-Else statement) is never 

executed, hence the unreachability property proves. 

Reachability of the Modified File Example 

Example 16 represents a modified version of Example 4 which removes the local 

procedure main’s only precondition, pre1, which asserts that the global file’s open field is 

always true. This allows the field to be both true and false. The makes the Else branch of the If-

Then-Else statement reachable. The analysis of this modified program shown in Figure 7 above 

reflects this. 

Viability 

Viability is an extension of reachability. When the user specifies a program composed of 

multiple external components, one might like to check that every line of the program is 
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reachable. However, there is also an implicit intention by the user to only call a component in 

ways that satisfy its preconditions. Viability combines the concept of reachability with this 

implicit intention; that is, it checks that each basic block is reachable under conditions when the 

local procedure’s preconditions and all external postconditions hold. Lines 53, 55, 57, 59, 61, 63, 

and 65 show the generated viability properties of Example 4. 

Similar to reachability, the viability properties attempt to prove that each basic block is 

nonviable. If the property is proven, then the block is unreachable under conditions when the 

system calls the basic block with its preconditions satisfied. If the property fails then the 

accompanying counterexample trace demonstrates at least one sequence of inputs that leads to 

the execution of that block under conditions where its preconditions are satisfied. It is worth 

noting that an unreachable basic block, is by definition, also nonviable. In other words, viability 

is a subset of reachability. 

Viability of the Modified File Example 

The modified File example, shown in Example 16, makes all the basic blocks from 

Example 4 reachable. As stated in the previous section, an unreachable block is also nonviable. 

However, a reachable block can be nonviable, depending on the preconditions required by a 

given external procedure. The analysis of the modified File example shows that every basic 

block has at least one trace that allows it to be executed with its preconditions satisfied. This is 

shown in Figure 7 above. 

Viability of the Modified Modified File Example 

Consider a Limp specification that is a small modification of the already modified File 

example, shown in Example 2. In this modified example the precondition to external procedure 
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alternate_writeFile is slightly changed from the expression file.open to not file.open. This is 

demonstrated in Example 17. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

type record File = { 
  open : bool, 
  writes : int, 
  data : int 
} 
 
global file : record File 
 
constant MAX_WRITES : int = 10 
 
external procedure alternate_writeFile(data : int) 
  returns () 
attributes { 
  precondition pre1 = not file.open; 
  postcondition post1 = file.writes == (init file.writes) + 1; 
  postcondition post2 = file.data == data; 
  uses file; 
  defines file.writes; 
  defines file.data; 
} 
 
procedure main(data : int) returns (success : bool) 
attributes { 
  //precondition pre1 = file.open; 
  postcondition post1 = success; 
} 
statements { 
  if(file.open) then { 
    while(file.writes < MAX_WRITES) { 
      alternate_writeFile(data);   
    } 
    success = true;  
  } else { 
    success = false; 
  } 
} 

Example 17 – The Modified Modified File Example 

This means that if the If branch of the If-Then-Else statement is executed, the new 

precondition of alternate_writeFile will never be satisfied. It is in direct contradiction to the test 

condition of the If-Then-Else statement. Basic block 3 of this program is nonviable, as shown in 

the analysis results shown in Figure 8. 
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Figure 8 - Analysis results of the Modified Modified File example 
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CHAPTER 5. LIMITATIONS 

This section discusses some inherent limitations in the SIMPAL reasoning framework. 

Some limitations are introduced by the limitations of the underlying Lustre language and the 

reasoning tools available for it. Others are limitations introduced by the reasoning approach 

selected here. 

String semantics 

The underlying analysis language, Lustre, does not support string types. As described in 

the section entitled “Remove Strings“, strings are removed prior to the translation from Limp to 

Lustre and replaced with integers. In this translation the ability to equate two strings is preserved 

(by mapping strings to integer constants and comparing) but we are unable to reason about the 

concatenation of strings or analyze substrings of a string type. Currently the targeted analysis 

tool, JKind, does not support string types. However ongoing research to develop SMT theories 

may improve reasoning over string types. Once this capability is sufficiently mature the Limp 

translation can be updated to support this capability. 

Performance 

The target analysis tool, JKind, is a model checker that reasons over infinite-state systems 

using SMT-solvers and performing a generalized form of induction called k-induction. The 

performance of k-induction solvers tend to degrade when large values of k are necessary to prove 

the property. In practice, this is mitigated by introducing lemmas that allow properties to be 

proven using smaller values of k. The translation of Limp to Lustre maps an entire Limp 

program into a state machine that executes the program over multiple Lustre steps. The number 

of basic blocks in a Limp program dictates the total number of steps to reach termination of the 
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function call. This means that using this approach on large programs could result in large k-

values necessary to prove properties by induction. As the k-value needed to prove a property 

increase, the tool is more likely to return indeterminate results, which means it is unable to prove 

or falsify a given property. 
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CHAPTER 6. IMPLEMENTATION 

The SIMPAL tool is implemented in the Xtext framework. Xtext is a framework for 

developing domain-specific languages. By providing a language description in the Xtext 

grammar specification language, users can quickly and easily build Eclipse based development 

environments to parse, analyze, and process their domain-specific languages. The SIMPAL 

framework provides an environment for parsing, validating and analyzing Limp specifications. 

The Limp integrated development environment (IDE) is shown in Figure 9. 

 

Figure 9 - The Limp IDE 
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The integrated development environment provides the capability to analyze a program 

and immediately give the user feedback as they edit the file. For example, type checking is done 

on the fly. However, higher level analyses can also be performed. For example, the tool will 

highlight an external procedure that contains no outputs and modifies no global variables, 

notifying the user that the procedure basically performs a null-operation. 

Further, when a program is analzyed the results are displayed conveniently for the user in 

a tab labeled Analysis Results. This tab is shown in Figure 10. 

 

Figure 10 - Analysis Results Tab 

If a property has failed, such as main_post3, shown in Figure 10, the user can easily 

right-click on it and display the counterexample trace inside of the IDE. This capability is shown 

in Figure 11. It is very useful for understanding why a property has failed and provides 

assignments to each variable in the program that the user can conveniently view, even collapsing 

large record and array objects for the user’s convenience. 
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Figure 11 - Viewing the counterexample trace in the Eclipse IDE 
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CHAPTER 7. FUTURE WORK 

The reasoning approach used by SIMPAL involves generating the CFG for the program 

and producing a state machine that is then executed. Each block in the CFG is modeled as a 

Lustre node, and the state of the program are passed to each node as it is executed. This approach 

maps the execution of the program over multiple Lustre time steps; one time per basic block in 

the CFG. As discussed previously, the inherent flaw in this approach is that for large programs, a 

significant number of Lustre steps must be executed to reach the end of the program. Depending 

on the program structure, it may take a very high k-value to prove that the postconditions of the 

program hold. Generally, proofs requiring high k-values for k-induction take a longer time to 

prove. This means that SIMPAL may not scale well for long programs. Future work on SIMPAL 

will address these issues. There are areas where improvements could be made to the translator to 

improve performance, and each is discussed in the following sections. 

Loop Unwinding 

The CBMC [44] model checker model performs bounded model checking of ANSI C 

programs. Unlike SIMPAL, CBMC unwinds loops [45] into a flat representation before sending 

it to the underlying solver. The benefit of this is it maps the execution of the entire program into 

a single Lustre step which helps reduce the k-value necessary to prove properties of the program 

when it terminates. The drawback of this however is it an undecidable problem to unwind loops 

the correct number of times (particularly for while loops) and thus, it would require human 

assistance to ensure that all loops in the program are unwound the correct number of times. The 

other drawback is it can be difficult to understand the underlying model due to complicated state 

variable interactions necessary to capture the control-flow aspects of the program correctly. 
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Emitting Lemmas based on the CFG Structure 

One useful approach in k-induction model checkers is the use of generated invariants. 

JKind, Kind 2, and other k-induction model checkers devote an entire process to generating 

invariants for transition systems. Some invariants can serve as lemmas in the proof proving 

process. A useful lemma can make a property that was once solved by k-induction (for 

k=2,3,4,…) inductive (k=1). Inductive properties are often solvable very quickly via model 

checking and as such, the practice of invariant generation can be beneficial when solving 

properties of industrial software. 

JKind already uses invariant generation for models translated by SIMPAL. However, 

JKind’s lemma generation capability only generates lemmas based on datatypes in the model.  

SIMPAL could emit lemmas at translation time based on the structure of the model. It is not 

clear however, which lemmas would be helpful. The first step in this work would be to do an 

empirical study on large models and determine which lemmas would be helpful, generalize an 

approach from those examples and then implement the approach in the tool. 

Another way to support lemmas would be to allow users to specify invariants inside of 

the program as part of the program, similar to an assert statement in Java. Currently, users can 

only specify preconditions and postconditions for local and external procedures. Allowing users 

to specify invariants anywhere in the body of local procedures would allow domain experts 

developing the specification to identify invariants for loops, and other structures of the program, 

which could then be fed to the JKind model checker as part of the translation.  

Develop Formal Semantics for the Limp language 

The input language to SIMPAL, Limp, does not currently have a defined formal 

semantics. By defining a formal semantics for the Limp language, it will be possible to 
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demonstrate that the translation from Limp to Lustre is correct. This step would encourage more 

widespread adoption of the tool within other frameworks. 

Integrate SIMPAL with AGREE 

SIMPAL’s input language, Limp, is slightly more expressive than the Lustre language 

supported by AGREE. It is also easier to concisely represent software programs. Integrating 

SIMPAL with AADL would provide a more flexible language for expressing behavioral 

information about systems and software architectures specified within AADL. In fact, there are 

no drawbacks; everything representable with Lustre is representable with SIMPAL. If a system’s 

behavioral information does not use control the emitted Limp model is very similar to the Lustre 

representation. Future work should focus on integrating SIMPAL in the AGREE framework to 

allow for greater flexibility in AADL behavioral descriptions supported by AGREE. 
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SUMMARY AND CONCLUSIONS 

SIMPAL is a tool for performing compositional verification of programs written in an 

imperative style language called Limp. It supports reasoning over a full complement of control 

flow mechanisms and global variables. This represents a significant improvement over the 

AGREE framework which can only reason about programs expressed in the synchronous 

dataflow language Lustre. SIMPAL can be used to express programs constructed of existing 

components and then reason about whether the new, composed program will accomplish its 

goals. The analysis it performs is contract-based verification; that is, it verifies that the top-level 

program utilizes the components in a manner that is consistent with their preconditions and that 

the composition of the components satisfies the top level program’s postconditions. SIMPAL 

also analyzes the provided program to establish that each node of the program’s CFG is 

reachable and viable. Reachability simply establishes that each node of the CFG can be reached 

while viability establishes that each node of the program is reachable while preserving the 

component and overall program’s preconditions. 

SIMPAL analyzes a given program by breaking it down into a CFG and representing it as 

a state machine, in the Lustre language. This Lustre representation of the program is then passed 

to the JKind model checker for analysis. The analysis is performed and the results are provided 

to the user. Falsified properties are accompanied with counterexamples to help the user 

understand how the program violates them. SIMPAL is implemented in the Eclipse framework. 

The domain specific language (DSL), Limp, is built using the XText framework for developing 

DSLs. The tool is open source and available for download on the SIMPAL Github repository 

[46]. 
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