
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2017

SIMPAL: A Compositional Reasoning Framework
for Imperative Programs
Lucas G. Wagner
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons, Computer Sciences Commons, and the Electrical
and Electronics Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Wagner, Lucas G., "SIMPAL: A Compositional Reasoning Framework for Imperative Programs" (2017). Graduate Theses and
Dissertations. 16263.
https://lib.dr.iastate.edu/etd/16263

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16263&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16263&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16263&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16263&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F16263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F16263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Fetd%2F16263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Fetd%2F16263&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/16263?utm_source=lib.dr.iastate.edu%2Fetd%2F16263&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

SIMPAL: A compositional reasoning framework for imperative programs

by

Lucas George Wagner

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Electrical Engineering

Program of Study Committee:
Ratnesh Kumar, Major Professor

Robyn Lutz
Samik Basu

The student author and the program of study committee are solely responsible for the content of this
thesis. The Graduate College will ensure this thesis is globally accessible and will not permit
alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2017

www.manaraa.com

ii

TABLE OF CONTENTS

 Page

ACKNOWLEDGMENTS ... iii

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 BACKGROUND .. 2

Lustre ... 3

Model Checking ... 5

Compositional Reasoning .. 8

CHAPTER 3 RELATED WORK ... 12

CHAPTER 4 APPROACH ... 14

Limp Specification Language .. 15

Translation to Lustre .. 22

Analyses ... 41

CHAPTER 5 LIMITATIONS ... 51

String semantics ... 51

Performance ... 51

CHAPTER 6 IMPLEMENTATION ... 52

CHAPTER 7 FUTURE WORK .. 56

Loop Unwinding .. 56

Emitting Lemmas based on the CFG Structure ... 56

Develop formal semantics for the Limp Language .. 56

Integrate SIMPAL and AGREE ... 57

SUMMARY AND CONCLUSIONS .. 59

REFERENCES .. 60

www.manaraa.com

iii

ACKNOWLEDGEMENTS

This research was developed with funding from the Defense Advanced Research Projects

Agency (DARPA). The views, opinions, and/or findings expressed are those of the authors and

should not be interpreted as representing the official views or policies of the Department of

Defense or the U.S. Government.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Software reuse is the practice of using existing software to build new software. There are

varying reasons for employing software reuse, many of them owing to the convenience,

economy, and recognized service history of existing code. However, reused software

components are often custom designs, specifically engineered and tested to work in a single

context. If software is reused in a different context, the overall assurance case (reviews, testing,

service history, etc) is incomplete; the argument for trust was based on a specific context, not an

arbitrary one.

This paper introduces a tool built to analyze programs composed of existing software

components using contract-based reasoning. This tool is called SIMPAL (Static IMPerative

AnaLyzer). It features a domain specific language that can be used to specify a software program

that is composed of existing components. Once a program is specified, users can analyze whether

a program obeys all of the preconditions required by the reused components, and that the

resulting program obeys its intended postconditions. Further, it allows the user the ability to

specify exactly how a component will utilize and modify global variables in the analysis.

Additional analyses are performed to identify unreachable portions of the CFG, identifying dead-

code. Finally, results are reported back to the user identifying a sequence of inputs that could

violate the various contracts specified in the new program. This information can be used by the

program developer to refine the software specification.

www.manaraa.com

2

CHAPTER 2. BACKGROUND

This thesis introduces the SIMPAL framework which extends the concept of contract-

based reasoning to imperative programs written in the Limp program specification language.

This tool enables users to construct programs composed of existing components and verify that

the resultant program will operate as intended. The analysis it performs is assume-guarantee

reasoning; that is, it verifies that each component is called such that its assumptions are satisfied

and that the overall program meets its stated goals. This approach is similar to the approach

employed by the AGREE [1] tool, however, the input language to SIMPAL is more expressive;

it allows for a full complement of control flow mechanisms (if/then/else statements, while and

for loops, break and continue, labels and gotos, and return statements) and the use of global

variables. AGREE models are strictly represented in the Lustre synchronous dataflow language.

The AGREE tool implements contract-based reasoning on hardware and software

architectures specified in the Architectural Analysis and Design Language (AADL). This is

accomplished by creating a Lustre model of the behavioral aspects of an AADL model and

analyzing it with the JKind model checker. SIMPAL extends this work by introducing extensions

to the Lustre language that enable users to write an imperative style program specification. It

performs contract based verification on this program specification and identifies whether the

component assumptions are honored by the program, and whether the program satisfies its stated

postconditions. The following sections discuss the Lustre language, software model checking,

compositional reasoning and contract-based verification, and finally, the approach implemented

in the AGREE framework.

www.manaraa.com

3

Lustre

The Lustre [2] synchronous dataflow language is designed for programming reactive

systems. Programs written in the Lustre language continuously interact with their environment;

they sample inputs and compute outputs on every time-step. This makes Lustre a natural fit for

developing programs for controlling discrete event systems [3], automated control and

monitoring systems, signal processing, hybrid automata [4], and certain safety-critical

applications, such as avionics software. Shown in Example 1 is a Lustre program that accepts

three values that represent measurements provided from a sensor, and merges them into a single

signal. This algorithm, often referred to as triplex voter or sensor fusion, could be used to

provide a fault tolerant measurements in a safety critical application.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

const RATE : real = 0.05;
const MAX_ERROR : real = 0.1;

node max(a : real; b : real) returns (out : real);
let
 out = if (a < b) then b else a;
tel ;

node min(a : real; b : real) returns (out : real);
let
 out = if (a < b) then a else b;
tel ;

node middleValue(a : real; b : real; c : real) returns (out : real);
let
 out = max(min(a,b), min(max(a,b),c));
tel ;

node saturation(x : real; signal : real) returns (out : real);
var
 upper_limit, lower_limit : real;
 property1 : bool;
let
 property1 = x > 0.0;

 upper_limit = x;
 lower_limit = ‐x;

 out = if (signal < lower_limit)
 then lower_limit
 else if (signal > upper_limit)
 then upper_limit
 else signal;
tel ;

www.manaraa.com

4

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51

52

53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

node voter(a : real; b : real; c : real) returns (out : real);
var
 equalizationA, equalizationB, equalizationC : real;
 equalizedA, equalizedB, equalizedC : real;
 centering : real;
let
 equalizedA = a ‐ equalizationA;
 equalizedB = b ‐ equalizationB;
 equalizedC = c ‐ equalizationC;

 centering= middleValue(equalizationA, equalizationB, equalizationC);

 out = middleValue(equalizedA, equalizedB, equalizedC);

 equalizationA = 0.0 ‐> pre equalizationA +
 (RATE * (saturation(0.5, (equalizedA ‐ out)) ‐ saturation(0.25,centering)));
 equalizationB = 0.0 ‐> pre equalizationB +
 (RATE * (saturation(0.5, (equalizedB ‐ out)) ‐ saturation(0.25,centering)));
 equalizationC = 0.0 ‐> pre equalizationC +
 (RATE * (saturation(0.5, (equalizedC ‐ out)) ‐ saturation(0.25,centering)));
tel ;

node abs_diff(in1 : real; in2 : real) returns (out : real);
var
 diff : real;
let
 diff = in1 ‐ in2;

 out =
 if diff < 0.0
 then ‐diff
 else diff;
tel ;

node main(input : real; errorA : real; errorB : real; errorC : real) returns (out :
real);
var
 pre_input : real;
 input_change : real;
 assert_input1, assert_input2, assert_errorA, assert_errorB, assert_errorC :
bool;

 prop1 : bool;
let
 pre_input = 0.0 ‐> pre input;
 input_change = input ‐ pre_input;

 assert_input1 = (input >= 0.0 and input <= 20.0);
 assert_input2 = (input_change >= 0.0 and input_change <= 1.0);
 assert_errorA = (errorA <= MAX_ERROR) and (errorA >= ‐MAX_ERROR);
 assert_errorB = (errorB <= MAX_ERROR) and (errorB >= ‐MAX_ERROR);
 assert_errorC = (errorC <= MAX_ERROR) and (errorC >= ‐MAX_ERROR);

 assert assert_input1;
 assert assert_input2;
 assert assert_errorA;
 assert assert_errorB;
 assert assert_errorC;

 out = voter(input + errorA, input + errorB, input + errorC);

www.manaraa.com

5

92
93
94

 prop1 = abs_diff(out,input) <= (4.0 * MAX_ERROR);
 ‐‐%PROPERTY prop1;
tel ;

Example 1 - Lustre program for a sensor fusion algorithm

This Lustre program is derived from work on analyzing an industrial triplex voter [5].

The triplex voter is an algorithm used to merge the measurements from three similar sensors into

a single value, incorporating features to smooth the fused value to prevent drastic transient

fluctuations in the output value. This behavior is defined in the node called voter, found on lines

36-53 of Example 1. The node main contains additional information that is used to reason about

the relationship between the output of the voter and the three inputs. The property, named prop1

on line 93, defines a proof obligation that says the difference between the output of the voter and

the true value being measured is bounded by some constant term.

Example 1 is analyzable using model checking tools developed to analyze Lustre

programs. Kind 2 [6] uses bounded model checking [7], k-induction [8], and property directed

reachability [9] model checking techniques to prove, or disprove safety properties of Lustre

models. JKind [10] is a reimplementation of the Kind 2 model checker, developed in Java for

portability and integration into tool frameworks. Model checking is discussed thoroughly in the

following section.

Model Checking

Model checking is a verification technique that uses efficient algorithms to exhaustively

verify that a model satisfies a formal specification. Model checking can be used to verify

controllers of discrete event systems, hardware designs, and software. One popular model

checker, Simulink Design Verifier [11], uses model checking to verify real-time systems

expressed in Simulink/Stateflow [12]. Model checking was independently pioneered by Clarke

www.manaraa.com

6

and Emerson [13] and Sifakis and Queille [14]. Typically, model checking is automatic. This

makes it attractive to industrial users. The biggest drawback of model checking is its

susceptibility to the state-space explosion problem. Essentially, as the state-space of the model

under analysis grows linearly, the time required to verify it grows exponentially. Since its

introduction, most of the research in the field has been towards mitigation of the impact of state-

space explosion.

Model checking approaches fall into two categories: explicit-state and symbolic. Explicit

state tools examine each state individually to determine if the formal specification is violated.

Symbolic tools analyze multiple states at a time, often through the use of compact efficient data

structures, such as binary decision diagrams, to verify the program. Both approaches are

discussed in the following sections.

Explicit-State Model Checking

Explicit state model checking (also referred to as enumerative state) tools examine each

state, individually, to determine if the formal specification is violated. Perhaps the most

accomplished explicit state model checker is the SPIN model checker [15]. It has been used to

great success to verify complex algorithms. It was used to verify mission critical components of

several space exploration missions, including the Mars Science Laboratory [16] and the Cassini

unmanned spacecraft [17] used to explore Saturn and its moons.

As discussed previously, model checking is sensitive to the state-space explosion

problem. Explicit state model checkers, like SPIN, are more sensitive to state-space explosion,

because they must examine each state individually. Nevertheless, advancements in efficiently

codifying the state-space, such as bitstate hashing [18] and partial order reduction [19], have

helped to mitigate the state-space explosion in explicit state approaches. Further improvements

www.manaraa.com

7

in the verification algorithm, including parallelization [20] that resulted in and N-fold

improvement (when parallelizing the algorithm across N CPUs) have helped explicit state remain

successful in the face of ever-increasing complexity in software systems.

Symbolic Model Checking

Symbolic model checking [21] represented a significant improvement in the size of

systems able to be verified with model checking. The first symbolic approaches used ordered

binary decision diagrams (OBDDs) to efficiently represent the state space of the system to be

verified. This approach is implemented in the SMV [22], NuSMV [23], and Symbolic Analysis

Laboratory (SAL) tools [24], among others. More modern approaches symbolically represent the

system using first order logic. While still susceptible to state-space explosion, symbolic tools

fare much better than explicit state tools, successfully being used to analyze industrial systems

containing up more than 10120 states [25]. One major limitation to this approach that OBDD

representations are inherently limited; they can only capture finite-state systems. Finite-state

systems (those containing boolean and integer variables) can be represented with OBDDs.

Infinite-state systems (those containing real variables) cannot. This limits the applicability of the

approach to software based systems that only contain booleans and bounded range integers.

Yet another symbolic approach captures the model as a first-order logic representation

which can then be analyzed using a satisfiability solver [26]. Initial approaches used the

satisfiability solver to search for property violations in n-steps reachable from the initial states.

This approach, known as bounded model checking, cannot demonstrate a property to be true, but

can be useful for finding violations, and thus defects, in a given artifact. However, clever

innovation led to proof obtaining approaches that used the bounded model checking algorithm to

establish the base and inductive steps of an inductive proof. This approach, known as k-

www.manaraa.com

8

induction, uses a generalized form of induction and is useful for proving invariant properties

over finite-state transition systems that represent software.

Modern best-of-breed tools utilize satisfiability-modulo theory solvers [27] (SMT) to

successfully analyze systems containing real variables and infinite-range integers. Parallelization

of the inductive algorithm [28] resulted in moderate speed increases on multi-core machines.

Current research is exploring techniques such as property directed reachability, which offer

better performance on certain classes of models.

Compositional Reasoning

Despite continued progress in mitigating state-space explosion, it still remains a

significantly limiting factor when using model checking to analyze industrial systems.

Compositional reasoning is an approach that seeks to address the state-space explosion problem

by breaking the global system into components, analyzing them separately, and then use the

results of the component analyses to prove a property of the global system. Some approaches are

automatic, while other approaches require manual intervention by the user. Automatic methods

are useful in that they do not require the user to provide information to the tool to successfully

reason about the system under analysis. However, manual methods that rely on user input may

provide better results if the user provides information about the design and overall goals of the

system that the analysis tool my not be able to infer. The following sections will describe some

automatic and manual methods for performing compositional reasoning.

Automatic Reduction of the Transition Relation

Automatic methods for decomposing a problem are useful because they do not require

the user to provide information to the tool. These methods exploit the structure of the underlying

model, such as OBDDs, that the model is represented in.

www.manaraa.com

9

One technique [29] partitions the transition relations of a logical system into multiple

smaller transition relations, rather than a larger single one. Generally, the time necessary to

analyze a transition relation grows exponentially with linear increases in its size, thus, very large

relations can be difficult to analyze. This technique will represent the system’s transition relation

with multiple smaller ones, which are easily analyzed separately, and then compose those results

to provide a result for the entire system. A similar approach, lazy parallel composition [30],

composes a set of restricted transition relations that represent accurate global system behaviors

for important states, but may not represent accurate behaviors for unimportant states. These

restricted transition relations can be made to be much smaller, and thus, mitigate state-space

explosion.

Contract-Based Reasoning

Contract-Based reasoning [31] is a manual approach in which the user reasons about the

components of the system and then uses proven properties to construct an argument about the

global system. This approach requires the user to reason about the components of a system using

component based analysis. One advantage of contract-based reasoning is different verification

approaches may be used to verify the components, and then, the results can be combined to

reason about the whole. Figure 1 shows a simple toy example containing components A, B, and

C.

www.manaraa.com

10

Figure 1 - A Toy Compositional Proof Example

Suppose component A was verified using model checking, component B was verified

using theorem proving, and component C was verified using traditional (test-based) approaches.

Model checking of component A established that if the input to A is less than 20, it will always

produce an output that is less than two times the input. This analysis reflects assumptions (or

preconditions) made on the environment that A operates within and a guarantees (or

postconditions) that it provides to that environment. The combination of the assumptions and

guarantees associated with a component are collectively referred to as a contract. The contract

for components A, B, C, and the system described in Figure 1 are in Table 1.

Table 1 – Assumptions and Guarantees for the Toy Example in Figure 1

Component Assumptions Guarantees
A InputA < 20 OutputA < 2 * InputA
B InputB < 20 OutputB < InputB + 15
C None OutputC = InputC1 + InputC2

System InputSystem < 10 OutputSystem < 50

In contract-based reasoning it is necessary to verify not only that the system meets its

guarantees (the global specification) but also that it calls each component in a way that satisfies

its assumptions (i.e. it is used in a way that does not violate the conditions of the component

www.manaraa.com

11

analysis). Hence, each component assumption and system guarantee become proof obligations.

These proof obligations are colored red in Table 1. However, because the components are

verified we can make assumptions about their behavior. We assume each component will meet

its stated guarantees. Similarly, we can also assume that the system assumptions also hold. These

assumptions are colored in blue in Table 1 and are enforced in the analysis of the aforementioned

proof obligations.

www.manaraa.com

12

CHAPTER 3. RELATED WORK

 Previous work in the area of contract-based reasoning focuses on the use of formal

methods techniques to perform the reasoning. As mentioned earlier, the AGREE framework

performs assume-guarantee reasoning over models written in the AADL language. The

architectural aspects of a system are expressed in AADL in the Open Source AADL Tools

Environment [32] (OSATE) and AGREE provides a mechanism to capture the behavioral

aspects of each component, including the assumptions and guarantees each component requires

and provides. AGREE then performs assume-guarantee reasoning by translating the behavioral

aspects of each component in a given system into an equivalent Lustre model. The component

guarantees and system assumptions are assumptions for the reasoning engine and the component

assumptions and system guarantees are proof obligations.

 Similar to AGREE, the Othello Contracts Refinement Analysis [33] (OCRA) tool

performs compositional reasoning over systems described in the OCRA System Specification

language (OSS) [34], a textual format unique to the OCRA tools. OCRA allows users to model

hybrid and discrete time systems. OCRA targets the NuXMV [35] reasoning engine for discrete

time systems and the HyCOMP [36] analysis tool for hybrid systems. Similar to the AGREE

tool, it also performs assume-guarantee reasoning of discrete time and hybrid systems.

 Frama-C [37], a C source code analysis framework, utilizes assume-guarantee reasoning

as part of its abstract interpretation [38] based Value analysis [39] plugin. The tool provides an

option to use user specified contracts (written in the ANSI/ISO C Specification Language [40])

for any called function. Similarly, the SPARK 2014 [41] toolset provides a utility, gnatprove

[42], which performs a similar analysis to Frama-C, which is based on abstract interpretation and

utilizes assume-guarantee reasoning for subprograms.

www.manaraa.com

13

 SIMPAL extends the previous work by providing the following capabilities:

 Assume-guarantee compositional reasoning of programs written in an imperative style

powered by model checking. AGREE and OCRA operate in a synchronous dataflow

environment. Frama-C [37] and SPARK [41] perform assume-gaurantee reasoning using

abstract interpretation.

 Performs viability analysis of source code, which is described later in this document.

www.manaraa.com

14

CHAPTER 4. APPROACH

The SIMPAL tool allows users to specify a program constructed from existing software

and custom functionality and use formal methods to reason about whether the existing

components were correctly used and whether the constructed program behaves as intended.

SIMPAL is implemented in Xtext and uses a domain specific language called Limp (a

portmanteau of Lustre Imperative) to capture the specification of a new program.

As the user writes the program the editing environment will identify errors (syntax, type-

checking, unreferenced variables, incorrect contracts) for the user to fix in real-time. This

ensures that the new program will interface correctly with the existing components as they are

defined. Once the user has written a program that passes all of the cursory checks the user can

then analyze the model using model checking. In this analysis the Limp specification is

translated into an equivalent representation in the Lustre language. This Lustre representation is

based on the control flow graph (CFG) of the original Limp specification and is executed as a

state machine. Execution of the program is mapped across multiple Lustre time steps, one for

each basic block in the CFG. The artifacts of the translation process are shown in Figure 2.

Figure 2 - Analysis internal and external artifacts

www.manaraa.com

15

System and component contracts are gathered during translation and captured in the final

Lustre model. These contracts are used to generate properties to be checked using the JKind [10]

model checking tool. Proof violations are reported back to the user as counterexamples, a

sequence of input assignments in the program that violate the system and component contracts.

Limp Specification Language

The Limp language is a domain specific language designed for specifying programs

constructed from existing components. Limp was designed to target the Lustre analysis language,

yet unlike Lustre, it supports control flow constructs (if, while, for, break, continue, return),

imperative execution semantics (allowing variables to be assigned more than once) and a

property specification language designed for contract based reasoning. The full grammar for the

Limp language can be found at the SIMPAL Github repository grammar page [43].

Motivating Example

Example 2 shows a Limp specification of a program that accepts a record type named

File and data to write to it. It returns a File record. In the context of this program a File is an

abstract data object that contains fields open, writes, and data which refer to different

characteristics of the file necessary to write to it. There is a constant MAX_WRITES which

describes how many times a File object can be written as well.

There is an external procedure writeFile that accepts a File record and data and produces

a File record that has the data written to the data field. The writeFile procedure has one

precondition. This precondition pre1 requires that the file to be written to is open. It has a single

postcondition post1 that the file_out File record is the same as file_in, except that the writes field

has been incremented by 1 and the data in the file is assigned to the data input argument.

www.manaraa.com

16

Finally the main procedure has one input argument and one output argument. The input

is data to be written to the file. The output is a boolean that represents whether or not the file

object was written successfully. This procedure modifies a global File record named file. The

procedure has a single postcondition named post1 (line 22 of Example 2). It states the procedure

will always be successful. In addition the main procedure has a precondition, pre1 (line 21 of

Example 2) that expects the file to be open prior to executing the procedure. Together pre1 and

post1 form the contract for this procedure, stating that if the global variable File is open, the

procedure will always end successfully.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

type record File = {
 open : bool,
 writes : int,
 data : int
}

global file : record File

constant MAX_WRITES : int = 10

external procedure writeFile(file_in : record File, data : int)
 returns (file_out : record File)
attributes {
 precondition pre1 = file_in.open;
 postcondition post1 =
 file_out == file_in{writes := file_in.writes + 1}{data := data};
}

procedure main(data : int) returns (success : bool)
attributes {
 precondition pre1 = file.open;
 postcondition post1 = success;
}
statements {
 if(file.open) then {
 while(file.writes < MAX_WRITES) {
 file = writeFile(file, data);
 }
 success = true;
 } else {
 success = false;
 }
}

Example 2 - A simple File writing program

www.manaraa.com

17

This example highlights several components of a Limp specification. In this case the

main procedure represents a new software program, while the external procedure writeFile

represents the existing component to be reused. For the program to work correctly it is necessary

to establish that the preconditions on the external procedure writeFile are preserved by the

system and that the postconditions of the new program are upheld by both the components and

glue-code.

Limp Type System

The Limp type system is similar to that of the Lustre language. This was an intentional

decision made because the analysis target of Limp specification is the Lustre language and the

expressive capabilities of the target language limit the expressive capabilities of the source

language. For this reason the Limp type system is a minor extension of the Lustre type system.

Types that can be described in Limp are:

 Natives (boolean, integer, real)

 Arrays

 Records

 Strings

 Abstract

The type system is fully compositional and composite types may contain other composite

types. String and Abstract types are not present in Lustre and as such we have limited capacity

for reasoning over them. During the translation from Limp to Lustre these types are abstracted

into simpler representations and semantic information is lost. These transformations are done at

the Limp level and are covered in Section entitled “Limp to Limp Transformations.”

www.manaraa.com

18

Functions

The Limp specification language distinguishes between a Function call and a Procedure

call. A function is used as a macro; it does not contain state, read or modify global variables, or

allow users to specify preconditions, postconditions, uses or defines specifications. Further,

functions are only allowed to return a single value, and are not allowed to assign any variable

more than once. Control flow elements such as loops and conditional statements are also not

allowed. In Example 3 below, lines 1-4 demonstrate the declaration of a local function that is

called on line 21, and line 6 demonstrates the declaration of an external function that is called on

line 23.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

function increment(in1 : int) returns (out : int)
equations {
 out = in1 + 1;
}

external function decrement(in1 : int) returns (out : int)

procedure main (a : bool) returns (x : int)
var {
 q : int;
}
attributes {
 postcondition post1 = x == 10;
}
statements
{
 q = 0;
 x = 0;
 for(q=0;q<10;q=q+1;) {
 if a then {
 x = increment(x);
 } else {
 x = decrement(x);
 }
 }
}

Example 3 - A Limp program containing local and external functions

Local Procedures

Local procedures are the main computational element in Limp. They capture the inputs

and outputs of the program being specified, the system level preconditions and postconditions,

www.manaraa.com

19

and existing components that are invoked in the program through external procedure calls.

Formal analysis is always considered through the entry-point of a local procedure. The inputs,

locals and outputs of a local procedure define the state that is tracked in the compositional

analysis. The syntax of a local procedure definition can be found in lines 19-33 of Example 2.

External Procedures

External procedures represent an existing program that is invoked via a procedure call

from within a local procedure. External procedures can be used to represent a computational

element. Similar to a local procedure, the user can specify the preconditions and postconditions

that the external procedure is expected to satisfy. In addition, the user can specify the global

variables (or portions of global variables) that are read and written by the external procedure.

This allows for precision in our analysis of programs. The syntax of an external procedure

definition can be found in lines 11-17 of Example 2.

Global Variables

Limp supports global variables of any valid Limp type. These variables can be read and

written by both external and local procedures.

Contract Specification

Limp allows for the specification of a contract (preconditions and postconditions) for

both local and external procedures. Further, it allows for the specification of use/define sets for

global variables as well.

Local Procedure Contracts

Local procedures are the main computational element in Limp. Formal analysis is

performed using a local procedure as the entry point for analysis. Considering this, preconditions

www.manaraa.com

20

and postconditions assigned at the level of a local procedure have a very distinct meaning.

Preconditions are assumed by the analysis to be true and postconditions become proof

obligations to be checked at the termination of the program. In Example 2 the local procedure

main has one precondition and one postcondition. This means that the analysis assumes that all

initial assignments to the global variable file will have the field open set to true. At the

completion of the program specified we expect the final variable assignments to satisfy the

postcondition post1. If this is not the case the analysis will identify execution traces that violate

each property.

External Procedure Contracts

External procedures are used to represent external computation. Like a local procedure,

an external procedure has preconditions that its inputs are expected to satisfy and postconditions

that its outputs will satisfy. However, when invoked from another program the roles of

preconditions and postconditions are reversed. A component postcondition can be assumed to be

satisfied by the component (verification that the actual component satisfies the postcondition is

up to the provider) but only if its preconditions are met. Therefore all component preconditions

become proof obligations.

In Example 2 the external procedure writeFile has a precondition pre1 that must be

satisfied by the caller. This means that the global variable file (the argument provided to the call

to external procedure writeFile) must have the field open set to true. The analysis performed by

this tool will verify that all preconditions are satisfied from the calling context. When

considering the behaviors of the writeFile external procedure from within the main local

procedure, we assume that the component meets its contract and assume that it satisfies its stated

postconditions. Therefore when writeFile is completed we expect it will return a File record with

www.manaraa.com

21

the writes field incremented, the data field written to the value provided to the procedure, and the

remaining elements set to the same values as the input File record, per postcondition post1.

Uses and Defines Specifications

External procedures may interact with global variables and the uses and defines

mechanisms exist to specify this interaction. Limp provides specification constructs to precisely

specify how a global is read or written from a local or external procedure. The uses construct is

used to specify which portions of a global variable can be read by a procedure and similarly the

defines construct is used to specify which portions of a global variable a procedure can write to.

If a global variable is of a composite type (record or array) the user can precisely specify each

element that is used or defined. This allows for the precise specification of how globals are read

and written by the program. Example 4 shows an alternate version of the program from Example

2, with modifications made to the external procedure writeFile, which now utilizes the uses and

defines construct. The syntax of the specification is shown in lines 16-18.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

type record File = {
 open : bool,
 writes : int,
 data : int
}

global file : record File

constant MAX_WRITES : int = 10

external procedure alternate_writeFile(data : int) returns ()
attributes {
 precondition pre1 = file.open;
 postcondition post1 = file.writes == (init file.writes) + 1;
 postcondition post2 = file.data == data;
 uses file;
 defines file.writes;
 defines file.data;
}

procedure main(data : int) returns (success : bool)
attributes {
 precondition pre1 = file.open;
 postcondition post1 = success;
}
statements {

www.manaraa.com

22

27
28
29
30
31
32
33
34
35

 if(file.open) then {
 while(file.writes < MAX_WRITES) {
 alternate_writeFile(data);
 }
 success = true;
 } else {
 success = false;
 }
}

Example 4 - An alternate version of Example 2

In Example 4 the external procedure alternate_writeFile directly writes the global

variable file rather than it being provided as an input argument. In addition to minor changes to

the preconditions and postconditions to reflect this change, there are also uses and defines

specifications. This specification shows that the alternate_writeFile reads the global variable file

(the entire variable) and writes to its writes and data fields. This information is used in the

formal analysis approach to preserve the frame condition; that is, it informs the analysis to only

vary the portions of a global variable that an external procedure will change, rather than

modifying the entire contents. Without this capability the analysis would require the user to

explicitly state the frame condition, which is tedious for large data structures.

Translation to Lustre

The translation to Lustre is accomplished through a multi-step process. First the Limp

specification is transformed to remove unsupported expressions to make the final Limp

specification closer in expressive capability to the Lustre language. Next the transformed Limp

specification is converted into a control-flow graph (CFG) representation. Then the CFG

representation is simplified through a series of CFG-to-CFG transformations. Finally the

simplified CFG representation is translated into a state-machine representation in Lustre. This

state-machine executes the Limp program over multiple Lustre steps, executing exactly one node

of the CFG on each computation step.

www.manaraa.com

23

Limp to Limp Transformations

The first part of translating Limp specifications to Lustre is transforming the user-

specified Limp to a semantically equivalent form that can more easily translated into Lustre. The

following sections describe each Limp transformation that is used in SIMPAL.

Remove Unspecified Constants

The Limp language allows for users to specify constants that are not assigned a literal

value. This means that the value of the constant could be any valid assignment for the constant’s

type, but it does not change for any particular analysis run.

1
2
3
4
5
6
7
8
9
10
11
12

constant UNSPECIFIED_CONSTANT : int

procedure main() returns (x : int)
attributes {
 postcondition post = x >= UNSPECIFIED_CONSTANT;
}
statements {
 x = 0;
 while(x < UNSPECIFIED_CONSTANT) {
 x = x + 1;
 }
}

Example 5 - A small program utilizing an Unspecified Constant

Unspecified constants are translated into External Functions with zero inputs. Eventually

these are translated into Lustre uninterpreted functions with zero inputs during the translation

from the CFG to Lustre. The transformed version of the program found in Example 5 is shown in

Example 6 below.

1
2
3
4
5
6
7
8
9
10
11
12
13

external function UNSPECIFIED_CONSTANT () returns (out : int)

procedure main () returns (x : int)
attributes {
 postcondition post = x >= UNSPECIFIED_CONSTANT ();
} statements
{
 x = 0;
 while x < UNSPECIFIED_CONSTANT ()
 {
 x = x + 1;
 }
}

www.manaraa.com

24

Example 6 -The program in example 3 after removing unspecified constants

Rename Lustre Keywords

Lustre language keywords that appear in Limp specifications would cause conflicts when

the user attempts to run the analyzer. This pass renames all conflicting identifiers in a Limp

specification.

Remove ElseIfs

ElseIf statements are used to avoid deep nesting of If-Then-Else statements. They are

simply syntactic sugar provided to the user for convenience. This transformation will remove

ElseIf statements by replacing them with nested If-Then-Else statements. This is done to

normalize the control flow structure prior to creating the CFG representation.

Remove Strings

Strings are not supported by the Lustre language. However the Limp language provides

some support for strings. Users can write string literals, and equate two string values, but

concatenation, evaluating substrings and similar operations are not supported. Prior to

translating to Lustre each string is replaced with a unique integer literal. All operations over

strings are replaced with semi-equivalent operations over integers.

1
2
3
4
5
6
7
8
9
10
11
12

procedure main(x : string, a : bool) returns (y : string)
attributes {
 precondition pre1 = x <> "ABC";
 postcondition post = y <> "ABC";
}
statements {
 if a then {
 y = x;
 } else {
 y = "ABC";
 }
}

Example 7 - A simple program demonstrating use of strings

Example 7 is transformed into the program found in Example 8.

www.manaraa.com

25

1
2
3
4
5
6
7
8
9
10
12
13
14
15
16
17

/#
Integer to String mapping :
 0 ‐> "ABC"
#/

procedure main (x : int, a : bool) returns (y : int)
attributes {
 precondition pre1_ = x <> 0;
 postcondition post = y <> 0;
} statements {
 if a then {
 y = x;
 } else {
 y = 0;
 }
}

Example 8 - The transformed version of Example 7

Normalize Control Flow

The last step before creating the CFG representation of the Limp specification is to

normalize control flow. This means all if-then-else, while, for, break, continue, and return

constructs are normalized into a set of labels and goto statements. This “spaghetti-code” is

difficult to read for humans, but it greatly simplifies the creation of the CFG. Example 9 shows a

simple program and Example 10 shows its representation in Limp after normalizing control flow.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

procedure main (a : bool, b : bool) returns (x : int)
var {
 iterations : int;
}
attributes {
 postcondition post1 = iterations > 0;
}
statements
{
 x = 0;
 iterations = 0;
 if a then {
 while(x < 10) {
 x = x + 1;
 iterations = iterations + 1;
 }
 }
}

Example 9 - A sample program utilizing control flow in Limp

1
2
3
4

procedure main (a : bool) returns (x : int)
var {
 iterations : int;
}

www.manaraa.com

26

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

attributes {
 postcondition post1 = iterations > 0;
} statements
{
 x = 0;
 iterations = 0;
 goto label_0 when a;
 goto label_1;

 label label_0;

 label label_3;
 goto label_4 when x < 10;
 goto label_5;

 label label_4;
 x = x + 1;
 iterations = iterations + 1;
 goto label_3;

 label label_5;
 goto label_2;

 label label_1;
 goto label_2;

 label label_2;

 label end;
}

Example 10 -Example 9 with normalized control flow

Transforming Finalized Limp to a Control Flow Graph (CFG)

The transformed Limp file has normalized control flow. This format contains only labels,

goto, and assignment statements. From this representation it is straightforward to identify the

basic blocks that make up the CFG nodes, as each basic block begins with an assignment

statement and ends with a goto statement. The arcs of the CFG are constructed by following the

goto statements.

Identifying Basic Blocks

A basic block is defined as a sequence of consecutive instructions that are always

executed from beginning to end without branching execution. Basic blocks are determined by

walking through the program, beginning a block on an assignment statement, and ending it once

www.manaraa.com

27

a goto statement or label statement is encountered. Once a goto statement is encountered a new

basic block begins with the first assignment statement in the resulting label.

Constructing the CFG

After the basic blocks of the program are identified, the CFG captures execution of the

program as a set of basic blocks as serve as nodes connected by arcs that dictate their execution

order. The CFG is constructed by walking through the normalized Limp specification from top to

bottom, connecting the basic blocks via the unconditional and conditional goto statements

encountered.

The program in Example 4 is translated into the CFG shown in Figure 3. The basic

blocks of the program appear in the nodes of the CFG, labelled 0 – 6.

Figure 3 - The Control Flow Graph (CFG) for the program in Example 4

Generating Unique Variable Instances

The Lustre language only allows a variable to be assigned once in a given node. This

presents problems when translating from Limp to Lustre because Limp does not have such

www.manaraa.com

28

restrictions. This is solved by applying a transformation that gives each variable inside of a basic

block have a unique name. Figure 4 shows a simple basic block with variables assigned more

than once.

Figure 4 - A simple basic block with variables x and y assigned twice

In this example, we create new variables for each instance of variables x and y. This

allows us to create a Lustre compliant representation while preserving the semantics of the block.

The example Figure 4 becomes the basic block in Figure 5.

Figure 5 – The example in Figure 4 with unique naming

The instructions inside of this block are now Lustre compliant and the translation of them

into Lustre is now trivial.

Translating the CFG representation to Lustre

Once the CFG representation has been created, and all of the basic blocks contained

within it have been transformed to contain only unique variables, it is ready to be translated to

Lustre. The translation is a multi-step process that must:

 Identify the entry point for the analysis

www.manaraa.com

29

 Determine the state and global variables in the program

 Translate the referenced type, constant, function, and external procedure declarations

 Generate a node for each basic block in the CFG

 Generate a node that executes the CFG (called the CFG Director node)

Identifying the Main Local Procedure

In the SIMPAL framework analysis of a program always happens through the execution

of a local procedure. This local procedure defines the input, output, and global variables that a

program will read and write. If a program does not contain a local procedure there is no entry

point for the analysis and thus an error will be reported by the editing environment to the user. If

a program contains multiple local procedures then there are multiple potential entry points for

analysis. In the case of multiple local procedures the following rule is used to identify the

analysis entry point: if a local procedure is named “main” then it is the entry point for analysis,

otherwise the last local procedure in a file is chosen as the entry point.

Identifying the State and Global Variables

Once the local procedure that is used as the entry point for analysis is identified, its

inputs, locals, and outputs are captured in a global record structure that represents the state of the

program for analysis. Similarly, the global variables that are read and written by the program are

stored in a second global record structure. These global records are typed as user named types so

they can be easily referred to in the translation.

Translation of Types, Constants, Functions, and External Procedures from Limp to Lustre

Limp declarations must be translated into Limp. For most of the Limp constructs this is a

straightforward process. Translating External Procedures is a more complicated as they represent

some additional features that are not native to the target Lustre language. The following sections

describe the translation from Limp to Lustre on each type of Limp construct.

www.manaraa.com

30

Types

The Limp type system is very similar to the Lustre type system. The only type extensions

to the Lustre system are String and Abstract types, both of which are removed with

preprocessing transformations. As a result, all the types contained in the model at the time of

translation should be trivial. The complete type mapping is shown in Table 2.

Table 2 – Limp to Lustre type mapping

Int → Int
Bool → Bool
Real → Real
String1 → Int

Abstract1 → Int
Array → Array2

Record → Record2

1String and Abstract types are removed during preprocessing
transformations and replaced with Integer types and operations.

2Composite types in Limp are mapped to equivalent Lustre types and
subtypes are recursively mapped into Lustre types, terminating when

a primitive type is encountered.

Constants

The earlier preprocessing pass, Remove Unspecified Constants, ensures that all constants

remaining in the model after transformation are specified. These remaining constants are then

easily translated into a Lustre constant. For the constant on line 9 of Example 2, the syntax in the

Limp and Lustre representations is exactly the same.

Functions

Local functions in Limp have similar behavior as Lustre nodes, except they do not

contain state. They are simply translated into into equivalent Lustre nodes with some very minor

www.manaraa.com

31

minor syntactical differences. The local function increment from Example 3 is shown below in

Example 11.

1
2
3
4

node increment(in1 : int) returns (out : int);
let
 out = (in1 + 1);
tel;

Example 11 - Lustre node representing the increment local function from Example 3

Procedures

External procedures and local procedures that aren’t the entry point of the analysis are

translated into uninterpreted functions in Lustre. One aspect that must be captured in this

translation is the portions of global variables that each procedure reads and writes, which is

defined by the uses and defines specification. For the alternate_writeFile procedure on line X of

Example 4, the resulting translation can be found in Example 12 below.

1
2
3
4
5
6
7

function alternate_writeFile(
 data : int;
 _file_IN : File
) returns (
 _file_writes_OUT : int;
 _file_data_OUT : int
);

Example 12 – Lustre uninterpreted function representing external function alternate_writeFile
from Example 4

The external procedure alternate_writeFile uses, or reads, the global variable file. This

additional argument is added to the inputs of the uninterpreted function that represents

alternate_writeFile in Lustre as shown on line 3 of Example 12. It also writes to the writes and

data fields of the global variable file. These fields are added as outputs to the uninterpreted

function, shown in lines 5 and 6 of Example 12. As we process statements from the original

program, we must update our procedure calls to reflect this new signature. This is discussed in

the section entitled “Generating Lustre nodes from Basic Blocks.”

www.manaraa.com

32

Generating Lustre nodes from Basic Blocks

Once the state and global record types are defined the basic blocks can be seen as a

sequential list of assignments that will update the state and global record types. This is captured

as a Lustre node that accepts a record of the current state and global record types. In addition the

preconditions and postconditions of any called procedure must be aggregated and passed as

output arguments to be used in later analyses. Finally the uses and defines specifications must be

handled at the site of the external procedure call to ensure only the specified portions of a global

variable are read and written to. The full translation of basic block 3 of the CFG in Figure 3, is

shown below.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

node main_block_3(
 trigger : bool;
 state_in : main_state_type;
 globals_in : main_global_type
) returns (
 state_out : main_state_type;
 globals_out : main_global_type;
 precondition : bool;
 postcondition : bool
);
var
 data_0 : int;
 success_0 : bool;
 file_0 : File;
 _file_IN : File;
 _file_writes_OUT : int;
 _file_data_OUT : int;
 file_1 : File;
 file_2 : File;
 data : int;
 success : bool;
 file : File;
 alternate_writeFile_pre1_ : bool;
 alternate_writeFile_pre1__prop : bool;
 alternate_writeFile_post1 : bool;
 alternate_writeFile_post2 : bool;
let
 data_0 = state_in.data;
 success_0 = state_in.success;
 file_0 = globals_in.file;
 alternate_writeFile_pre1_ = file_0.open;
 alternate_writeFile_pre1__prop = (trigger => alternate_writeFile_pre1_);
 _file_IN = file_0;
 _file_writes_OUT, _file_data_OUT = alternate_writeFile(data_0, _file_IN);
 file_1 = file_0{writes := _file_writes_OUT};
 file_2 = file_1{data := _file_data_OUT};
 alternate_writeFile_post1 = (file_2.writes = (file_0.writes + 1));

www.manaraa.com

33

38
39
40
41
42
43
44
45
46
47

 alternate_writeFile_post2 = (file_2.data = data_0);
 data = data_0;
 success = success_0;
 file = file_2;
 state_out = main_state_type {data = data; success = success};
 globals_out = main_global_type {file = file};
 precondition = (alternate_writeFile_pre1__prop);
 postcondition = (alternate_writeFile_post1 and alternate_writeFile_post2);
 ‐‐%PROPERTY alternate_writeFile_pre1__prop;
tel;

Example 13 - Lustre node representing basic block 3 from Example 4

Capturing the State and Global Record Variables

The state and global record types are provided as inputs to a basic block and as outputs.

The input values represent the state prior to the execution of the basic block, and the outputs are

their modified versions after the execution of the basic block.

The inputs are unpacked from the record types as local variables in the Lustre node prior

to processing any basic block statements. This is done to simplify namespace issues in the

translation. This is accomplished on lines 28-30 in Example 13.

Processing preconditions and postconditions

Preconditions and postconditions must be processed correctly for the analysis to be

accurate. First, the analysis must instantiate the preconditions and postconditions with variable

instances from the calling reference. Instantiated preconditions for the call to alternate_writeFile

are shown on line 31 of Example 13 and its instantiated postconditions are shown on lines 37-38.

All preconditions must be prepended with an implication containing a triggering signal

from the node. This signal ensures the preconditions will only be evaluated when the basic block

is actively being executed by the CFG Director node. This triggering signal is essential to the

analysis of component preconditions because the Lustre semantics execute the signal on every

time step and evaluating the property when the block is not active would lead to spurious

counterexamples. This is shown on line 32 of Example 13.

www.manaraa.com

34

Finally all the preconditions and postconditions are aggregated into a single variable to be

passed to the CFG Director node. The postconditions are also aggregated. These aggregated

signals are outputs to the node representing the basic block and are used by the CFG Director

node for analysis. The aggregated signals are captured on lines 44 and 45 of Example 13.

Processing the Uses and Defines specifications

When an external procedure is called and it contains uses and defines specifications,

several things must occur during the translation to ensure that it is handled correctly. First, the

current value of the global variables that are used by an external procedure call must be passed

into the uninterpreted function that represents the external procedure to be called. Just prior to

the call, the portions of the global variables used by the procedure are extracted to local

variables. These local variables are provided as arguments to the uninterpreted function that

represents the procedure. In Example 13, this local variable is assigned in line 33 and appears as

an input to the uninterpreted function alternate_writeFile in line 34.

Similarly the portions of the global variable that are written by the procedure are

provided as outputs of the uninterpreted function. These variables must be captured and then

merged into the global variable after execution of the uninterpreted function. Variables capturing

the updated versions of writes and data fields of the global variable file from the external

procedure call are written on line 34 of Example 13 as variables _file_writes_OUT and

_file_data_OUT. These variables are then merged into the previous version of the global

variable file on lines 35 and 36. This ensures that the file variable only changes aspects of the

variable that are called out in the defines specification for the external procedure.

www.manaraa.com

35

Generating the CFG Director Node

Once the basic blocks, or nodes of the CFG, are captured as Lustre nodes, the next step is

to create a node that will drive the execution of the CFG as a state machine. This node is

responsible for initializing the state and global record variables, calling the various nodes (or

basic blocks) of the CFG in the correct order to successfully emulate the program, threading the

state and global variable records through the execution of the CFG, and setting up system level

analyses including contract verification, reachability, and viability analysis. Example 14 shows

the CFG director node for the program in Example 4.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

node main(
 data__in : int;
 success__in : bool;
 file__in : File
) returns (
 data : int;
 success : bool;
 file : File
);
var
 state : int;
 pre_state : int;
 init_state : int;
 final_state : int;
 state_record : main_state_type;
 pre_state_record : main_state_type;
 init_state_record : main_state_type;
 global_record : main_global_type;
 pre_global_record : main_global_type;
 init_global_record : main_global_type;
 component_preconditions : bool;
 component_postconditions : bool;
 main_pre1_ : bool;
 main_post1 : bool;
 state_0_is_unreachable : bool;
 state_0_is_nonviable : bool;
 state_1_is_unreachable : bool;
 state_1_is_nonviable : bool;
 state_2_is_unreachable : bool;
 state_2_is_nonviable : bool;
 state_3_is_unreachable : bool;
 state_3_is_nonviable : bool;
 state_4_is_unreachable : bool;
 state_4_is_nonviable : bool;
 state_5_is_unreachable : bool;
 state_5_is_nonviable : bool;
 state_6_is_unreachable : bool;
 state_6_is_nonviable : bool;
let
 ‐‐%MAIN

www.manaraa.com

36

41

42

43

44

45

46

47

48

49

50
51

52
53
54
55
56
57
58
59
60

 state = (init_state ‐>
 (if (pre_state = 0) then 1 else
 (if (pre_state = 1) then
 (if file.open then 2 else 6)
 else
 (if (pre_state = 2) then
 (if (file.writes < MAX_WRITES) then 3 else 4)
 else
 (if (pre_state = 3) then 2 else
 (if (pre_state = 4) then 5 else
 (if (pre_state = 5) then pre_state else
 (if (pre_state = 6) then 5 else
 pre_state))))))));

 pre_state = (init_state ‐> (pre state));

 init_state = 0;

 final_state = 5;

 init_state_record = (main_state_type {data = data__in; success = false} ‐>
(pre init_state_record));

 pre_state_record = (init_state_record ‐> (pre state_record));

 init_global_record = (main_global_type {file = file__in} ‐>
(pre init_global_record));

 pre_global_record = (init_global_record ‐> (pre global_record));

 state_record,global_record,component_preconditions,component_postconditions =
((init_state_record, init_global_record, true, true) ‐>
(if (pre_state = 0) then
 main_block_0((pre_state = 0), pre_state_record, pre_global_record) else
(if (pre_state = 1) then
 main_block_1((pre_state = 1), pre_state_record, pre_global_record) else
(if (pre_state = 2) then
 main_block_2((pre_state = 2), pre_state_record, pre_global_record) else
(if (pre_state = 3) then
 main_block_3((pre_state = 3), pre_state_record, pre_global_record) else
(if (pre_state = 4) then
 main_block_4((pre_state = 4), pre_state_record, pre_global_record) else
(if (pre_state = 5) then
 main_block_5((pre_state = 5), pre_state_record, pre_global_record) else
(if (pre_state = 6) then
 main_block_6((pre_state = 6), pre_state_record, pre_global_record) else
(pre_state_record, pre_global_record, true, true)))))))));

 main_pre1_ = ((state = init_state) => file.open);
 main_post1 = ((state = final_state) => success);

 state_0_is_unreachable = (pre_state <> 0);
 state_0_is_nonviable = (H(component_preconditions) => (pre_state <> 0));
 state_1_is_unreachable = (pre_state <> 1);
 state_1_is_nonviable = (H(component_preconditions) => (pre_state <> 1));
 state_2_is_unreachable = (pre_state <> 2);
 state_2_is_nonviable = (H(component_preconditions) => (pre_state <> 2));
 state_3_is_unreachable = (pre_state <> 3);
 state_3_is_nonviable = (H(component_preconditions) => (pre_state <> 3));
 state_4_is_unreachable = (pre_state <> 4);
 state_4_is_nonviable = (H(component_preconditions) => (pre_state <> 4));

www.manaraa.com

37

61
62
63
64
65

66
67
68

69
70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

 state_5_is_unreachable = (pre_state <> 5);
 state_5_is_nonviable = (H(component_preconditions) => (pre_state <> 5));
 state_6_is_unreachable = (pre_state <> 6);
 state_6_is_nonviable = (H(component_preconditions) => (pre_state <> 6));

 data = state_record.data;
 success = state_record.success;
 file = global_record.file;

 assert component_postconditions;
 assert main_pre1_;

 ‐‐%PROPERTY main_post1;
 ‐‐%PROPERTY state_0_is_unreachable;
 ‐‐%PROPERTY state_0_is_nonviable;
 ‐‐%PROPERTY state_1_is_unreachable;
 ‐‐%PROPERTY state_1_is_nonviable;
 ‐‐%PROPERTY state_2_is_unreachable;
 ‐‐%PROPERTY state_2_is_nonviable;
 ‐‐%PROPERTY state_3_is_unreachable;
 ‐‐%PROPERTY state_3_is_nonviable;
 ‐‐%PROPERTY state_4_is_unreachable;
 ‐‐%PROPERTY state_4_is_nonviable;
 ‐‐%PROPERTY state_5_is_unreachable;
 ‐‐%PROPERTY state_5_is_nonviable;
 ‐‐%PROPERTY state_6_is_unreachable;
 ‐‐%PROPERTY state_6_is_nonviable;
tel;

Example 14 - CFG Director node for Example 4

Note to the reader: The H node, used on lines 53,55,57,59,61,63, and 65 of Example 14,

is a simple boolean predicate that determines if the provided expression has been true for all of

the program’s execution. It stands for Historically and its Lustre representation is shown below

in Example 15. It is used for viability analysis to enforce that the the local procedure

preconditions and called external procedure postconditions are true, a prerequisite for viability.

1
2
3
4

node H(signal : bool) returns (holds : bool);
let
 holds = signal ‐> signal and pre (holds);
tel;

Example 15 - The Historically node

Initializing the State and Global Records

The state record contains all of the inputs, locals, and outputs of the local procedure being

used as the entry point for analysis. The state record’s inputs are populated by assigning them to

www.manaraa.com

38

a nondeterminstic input value generated by the JKind model checker. Locals and outputs

(computed values) are assigned a default value for their type. These default types are shown in

Table 3.

Table 3 – Lustre Types mapped to default values

Int → 0
Real → 0.0

Bool → False
Composite Types → Composed of Primitive Defaults

Line 47 of Example 14 shows the construction of the initial state record for Example 4.

Once the state is initialized an expression that tracks the previous values of it is also generated.

These are shown on line 46 of Example 14.

Global records are constructed similarly, except all globals are always populated with

nondeterministic input variables. In our analysis we want to consider all potential values of a

global variable at the beginning of a program, and treating globals in this manner preserves that

capability. If the user would like to consider a subset of values for a global variable they can

specify those assumptions as preconditions on the procedure itself. Line 49 shows the

construction of the initial global record for Example 4. Similar to the state record, the previous

value of the global record is also tracked, as shown on line 48 of Example 14.

Constructing the CFG State Machine Expression

The CFG consists of nodes that are the basic blocks of the program being specified, and

the arcs consist of transition from basic block to basic block. Some arcs are guarded and have a

condition that determines whether or not they are taken, others are unconditional. In the CFG

Director node, each basic block must be executed in the correct sequence to emulate the CFG of

the program. For the CFG found in Figure 3 (which is computed from Example 4) we must

www.manaraa.com

39

generate equations that keep track of the initial block to be executed, the block currently being

executed, the previously executed block, and the final block being executed.

From the CFG in Figure 3 we can see that the initial block to execute is block 0. This is

reflected on line 43 of Example 14. The block being executed is dependent the previous block

executed and what conditions, if any, must hold in the previous state and global records. This

state transition relation is defined on line 41 of Example 14. The previously executed basic block

is tracked throughout this process and it is derived from the expression found on line 42 of

Example 14. Finally the final basic block must also be captured. This is useful for knowing when

the program has terminated and is used when checking postconditions of the overall program.

Line 44 show the assignment of the final basic block from Figure 3.

Threading the state and global variables through the CFG execution

Once the state machine that dictates the execution of the CFG is built the next step in the

translation is to construct an equation that threads the current state and global variables through

the calls to the various basic blocks. Similar to the state machine variables that are discussed in

the previous section, we must track the initial, previous, and current state and global records. The

generation of the initial value is discussed in the section entitled “Initializing the State and

Global Records.” The previous value of the state and global records is trivial to compute. They

are shown on lines 46 and 48 of Example 14, respectively.

To compute the current value of the state and global records we must identify which

basic block is currently being executed, call the Lustre node that represents that basic block with

the previous values of the state and global records, and capture the output of executing that node

in the current state and global records. The component preconditions and postcondition signals

are also captured. This is shown on line 49 of Example 14. The reader should note that on the

www.manaraa.com

40

initial state no basic block is called, instead the current values of the state and global vectors are

set to the initial values, and the component_precondition and component_postcondition signals

are set to true.

Generating assertions and proof obligations

The next responsibility of the CFG Director node is to generate the assertions and proof

obligations to perform contract reachability, and viability verification. Each type of analysis is

discussed in detail in the section entitled “Analyses.”

External procedure postconditions are lifted to the CFG Director node and asserted as

true. This means that when a component is used the analysis only considers outputs that satisfy

the external procedure’s postconditions. This is a key principle of contract based reasoning and it

is discussed further in the section entitled “Generating assertions and proof obligations.” Line 69

of Example 14 shows the assertion over the external procedure postconditions. Further any

preconditions found in the entry point local procedure being analyzed are also asserted as true.

This is another key principle in contract based reasoning. Line 70 illustrates the single

precondition of Example 4 being asserted in the CFG Director node.

Preconditions of all external procedures called from the entry point are turned into proof

obligations inside of the node that represents the basic block (see Example 13, Line 46) from

which it is called. Additionally all postconditions of the entry point are turned into proof

obligations (lines 51 of Example 14) and checked (lines 71 of Example 14) when the CFG is in

its final state, which represents the termination of the program.

Additional proof obligations representing the reachability and viability analyses are also

generated and checked as properties. These are discussed in detail in the Reachability and

Viability sections of this document, respectively. The proof obligations for viability and

www.manaraa.com

41

reachability are generated on lines 52-66 and checked as properties on lines 72-85 of Example

14.

Unpacking the state and global records

The last thing done in the CFG Director node is to unpack the state and global records

into output variables. This isn’t necessary, but does make it easy to refer to the original program

variables for interpreting any counterexamples the tool may generate.

Analyses

The SIMPAL tool performs three analyses on programs specified in the Limp language:

contract verification, reachability, and viability. If a system is composed of existing components,

and only the components’ preconditions and postconditions are known, is it possible to formally

prove that the new program satisfies its postconditions? Contract verification is an approach to

answering this question. Further, one might want to reason about the reachability of certain

portions of the specified program. Reachability analysis in SIMPAL either proves the existence

of a trace that allows each basic block in the program to be reached or proves that no traces allow

a basic block to be reached. Lastly the concept of viability is an extension of reachability.

Viability is reachability under conditions in which all the component preconditions and system

postconditions are satisfied. Essentially, viability is the reachability of a portion of the program

under intended conditions. The approach taken by the SIMPAL tool is discussed in the following

sections.

Contract Verification

Contract verification, also known as assume-guarantee reasoning, is a compositional

reasoning approach that is useful for verifying that a program or system of pre-verified

components behaves correctly. A contract for a component, or a system, is the set of assumptions

www.manaraa.com

42

(preconditions) it makes on the environment it operates in and the set of guarantees

(postconditions) that it will provide to the environment it operates in. Contract verification in

SIMPAL adopts the concept of assume-guarantee reasoning to a program specified in the Limp

language.

For the program specified in Example 4, the local procedure main has the following

contract, comprised of preconditions and postconditions. The precondition pre1 states that prior

to the execution of the program the file.open field is assumed to be set to true. The postcondition

post1 asserts that the success variable will always be true. This is shown in Table 4.

Table 4 – Contract for the main local procedure in Example 4

Preconditions:
 precondition pre1 = file.open;
Postconditions:
 postcondition post1 = success;

This program makes a single call to an external procedure, which is to

alternate_writeFile. That external procedure has one precondition and two postconditions. The

precondition pre1 requires the file.open field to be true of the global variable file prior to calling

the external procedure. The first postcondition specifies that the writes field of the global

variable file will be one greater than the value of it before executing the procedure. The second

postcondition specifies that the data field of the global variable file will be equal to the procedure

input data after execution. This contract is shown in Table 5.

Table 5 – Contract for the external procedure alternate_writeFile

Preconditions:
 precondition pre1 = file.open;
Postconditions:
 postcondition post1 = file.writes == (init file.writes) + 1;
 postcondition post2 = file.data == data;

www.manaraa.com

43

In the analysis performed by SIMPAL, we want to verify that all of the components are

called with variables that satisfy their respective preconditions. This proves that the specified

program always honors the preconditions of the external procedures it invokes. Every basic

block contains proof obligations that check whether procedure calls satisfy the stated

preconditions of the called procedure. This is shown on line 46 of Example 13. The triggering

signal ensures the analysis only evaluates the property when the basic block is actively being

executed.

Secondly we want to verify that the new program always honors its postconditions. These

properties are specified inside of the CFG Director, as discussed in the section entitled

“Generating the CFG Director Node.” These properties must only be checked when the program

has terminated. A program is terminated when the current basic block being executed is the final

basic block of the CFG. Line 53 of Example 14 shows the postcondition of the main local

procedure. The reader may note that the expression is prepended with an implication (state =

final_state.) This makes the property trivially true when the state is not the final state which

prevents spurious counterexamples.

To correctly perform contract verification assumptions must be made to only consider

inputs that satisfy the entry point’s preconditions and the components postconditions. Since

nothing is known about the internals of the called procedures, each procedure’s postconditions

can be assumed to be true. It is assumed that the specifier has already verified that each

component satisfies its postconditions. This analysis makes no attempt to verify the internals of

any called procedure. Line 49 of Example 14 captures all of the component postconditions of the

basic block being executed. It is not necessary to reason about individual postconditions, thus

they are aggregated into a single signal.

www.manaraa.com

44

Additionally we must assume that the preconditions of the entry point are true. This

occurs on line 70 of Example 14. The reader may note that this precondition is prepended with

an implication (state = init_state). This makes the assertion only hold for the initial state of the

program, which is prior to any execution of program statements.

The File Example

Example 4 demonstrates a simple example in which the local procedure main, specifies a

program in which a global object, file, is written repeatedly until the MAX_WRITES value has

been reached. In our analysis of this program we must verify that all calls to the external

procedure alternate_writeFile satisfy its precondition, and that the system always satisfies its

single postcondition. The results of this analysis are shown in Figure 6 below.

Figure 6 - Contract verification analysis results of Example 4

As we can see the postcondition of local procedure main, called main_post1 is valid.

Similarly the precondition of external procedure alternate_writeFile, called

alternate_writeFile_pre1_prop is also valid.

www.manaraa.com

45

Note to the reader: The remaining properties shown in Figure 6 relate to the reachability

and viability of each basic block in the original program. These are discussed in-depth in

Reachability and Viability sections of this document.

Modified File Example

For the purposes of demonstrating an invalid property we introduce a modified version of

Example 4 in which the local procedure main’s precondition is commented out. This allows the

global variable file’s open field to be both true and false in the analysis. Example 16 shows this

change to Example 4 on line 24.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

type record File = {
 open : bool,
 writes : int,
 data : int
}

global file : record File

constant MAX_WRITES : int = 10

external procedure alternate_writeFile(data : int)
 returns ()
attributes {
 precondition pre1 = file.open;
 postcondition post1 = file.writes == (init file.writes) + 1;
 postcondition post2 = file.data == data;
 uses file;
 defines file.writes;
 defines file.data;
}

procedure main(data : int) returns (success : bool)
attributes {
 //precondition pre1 = file.open;
 postcondition post1 = success;
}
statements {
 if(file.open) then {
 while(file.writes < MAX_WRITES) {
 alternate_writeFile(data);
 }
 success = true;
 } else {
 success = false;
 }
}

Example 16 - A modified version of Example 4

www.manaraa.com

46

Performing contract verification on this example yields the results shown in Figure 7.

Figure 7 – Contract verification analysis results of Example 16

The precondition of the external procedure alternate_writeFile, pre1, is still valid. This is

because the main program only calls this external procedure when the global variable file’s open

field is true, thus always satisfying the precondition. However now we see that the local

procedure’s main postcondition, post1, is invalid. This is because the If branch (lines 27-30 of

Example 16) of the If-Then-Else statement is never entered. It is inside this branch, on line 30,

that the success variable is set to true. Therefore the postcondition post1 is not satisfied in

circumstances when the global variable file’s open field is false. Similar to Figure 6, Figure 7

contains properties related to reachability and viability that are explained in later in the

document.

Reachability

Reachability analysis in the SIMPAL framework is a very simple analysis that generates

properties that attempt to prove that a given basic block in the CFG is not reachable. For

www.manaraa.com

47

Example 4, the CFG is shown in Figure 3. A basic block is reachable if it can be executed. For

each basic block in the CFG, we generate a property that asserts it cannot be reached. Lines 52,

54, 56, 58, 60, 62, and 64 of Example 14 demonstrate the generated reachability properties for

Example 4.

These properties attempt to prove that each basic block is unreachable. If the property is

proven, then the basic block is unreachable. However, if the property fails, the accompanying

counterexample trace will demonstrate at least one sequence of inputs that will lead to the

execution of that block.

Reachability of the File Example

In Example 4, the local procedure main’s precondition asserts that the global variable

file’s open field is always true. Careful inspection shows that the Else branch of the If-Then-Else

is never executed if the open field is never true. The analysis results shown in Figure 6 show that

the basic block 6 (the block that executes the Else branch of the If-Then-Else statement) is never

executed, hence the unreachability property proves.

Reachability of the Modified File Example

Example 16 represents a modified version of Example 4 which removes the local

procedure main’s only precondition, pre1, which asserts that the global file’s open field is

always true. This allows the field to be both true and false. The makes the Else branch of the If-

Then-Else statement reachable. The analysis of this modified program shown in Figure 7 above

reflects this.

Viability

Viability is an extension of reachability. When the user specifies a program composed of

multiple external components, one might like to check that every line of the program is

www.manaraa.com

48

reachable. However, there is also an implicit intention by the user to only call a component in

ways that satisfy its preconditions. Viability combines the concept of reachability with this

implicit intention; that is, it checks that each basic block is reachable under conditions when the

local procedure’s preconditions and all external postconditions hold. Lines 53, 55, 57, 59, 61, 63,

and 65 show the generated viability properties of Example 4.

Similar to reachability, the viability properties attempt to prove that each basic block is

nonviable. If the property is proven, then the block is unreachable under conditions when the

system calls the basic block with its preconditions satisfied. If the property fails then the

accompanying counterexample trace demonstrates at least one sequence of inputs that leads to

the execution of that block under conditions where its preconditions are satisfied. It is worth

noting that an unreachable basic block, is by definition, also nonviable. In other words, viability

is a subset of reachability.

Viability of the Modified File Example

The modified File example, shown in Example 16, makes all the basic blocks from

Example 4 reachable. As stated in the previous section, an unreachable block is also nonviable.

However, a reachable block can be nonviable, depending on the preconditions required by a

given external procedure. The analysis of the modified File example shows that every basic

block has at least one trace that allows it to be executed with its preconditions satisfied. This is

shown in Figure 7 above.

Viability of the Modified Modified File Example

Consider a Limp specification that is a small modification of the already modified File

example, shown in Example 2. In this modified example the precondition to external procedure

www.manaraa.com

49

alternate_writeFile is slightly changed from the expression file.open to not file.open. This is

demonstrated in Example 17.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

type record File = {
 open : bool,
 writes : int,
 data : int
}

global file : record File

constant MAX_WRITES : int = 10

external procedure alternate_writeFile(data : int)
 returns ()
attributes {
 precondition pre1 = not file.open;
 postcondition post1 = file.writes == (init file.writes) + 1;
 postcondition post2 = file.data == data;
 uses file;
 defines file.writes;
 defines file.data;
}

procedure main(data : int) returns (success : bool)
attributes {
 //precondition pre1 = file.open;
 postcondition post1 = success;
}
statements {
 if(file.open) then {
 while(file.writes < MAX_WRITES) {
 alternate_writeFile(data);
 }
 success = true;
 } else {
 success = false;
 }
}

Example 17 – The Modified Modified File Example

This means that if the If branch of the If-Then-Else statement is executed, the new

precondition of alternate_writeFile will never be satisfied. It is in direct contradiction to the test

condition of the If-Then-Else statement. Basic block 3 of this program is nonviable, as shown in

the analysis results shown in Figure 8.

www.manaraa.com

50

Figure 8 - Analysis results of the Modified Modified File example

 	

www.manaraa.com

51

CHAPTER 5. LIMITATIONS

This section discusses some inherent limitations in the SIMPAL reasoning framework.

Some limitations are introduced by the limitations of the underlying Lustre language and the

reasoning tools available for it. Others are limitations introduced by the reasoning approach

selected here.

String semantics

The underlying analysis language, Lustre, does not support string types. As described in

the section entitled “Remove Strings“, strings are removed prior to the translation from Limp to

Lustre and replaced with integers. In this translation the ability to equate two strings is preserved

(by mapping strings to integer constants and comparing) but we are unable to reason about the

concatenation of strings or analyze substrings of a string type. Currently the targeted analysis

tool, JKind, does not support string types. However ongoing research to develop SMT theories

may improve reasoning over string types. Once this capability is sufficiently mature the Limp

translation can be updated to support this capability.

Performance

The target analysis tool, JKind, is a model checker that reasons over infinite-state systems

using SMT-solvers and performing a generalized form of induction called k-induction. The

performance of k-induction solvers tend to degrade when large values of k are necessary to prove

the property. In practice, this is mitigated by introducing lemmas that allow properties to be

proven using smaller values of k. The translation of Limp to Lustre maps an entire Limp

program into a state machine that executes the program over multiple Lustre steps. The number

of basic blocks in a Limp program dictates the total number of steps to reach termination of the

www.manaraa.com

52

function call. This means that using this approach on large programs could result in large k-

values necessary to prove properties by induction. As the k-value needed to prove a property

increase, the tool is more likely to return indeterminate results, which means it is unable to prove

or falsify a given property.

 	

www.manaraa.com

53

CHAPTER 6. IMPLEMENTATION

The SIMPAL tool is implemented in the Xtext framework. Xtext is a framework for

developing domain-specific languages. By providing a language description in the Xtext

grammar specification language, users can quickly and easily build Eclipse based development

environments to parse, analyze, and process their domain-specific languages. The SIMPAL

framework provides an environment for parsing, validating and analyzing Limp specifications.

The Limp integrated development environment (IDE) is shown in Figure 9.

Figure 9 - The Limp IDE

www.manaraa.com

54

The integrated development environment provides the capability to analyze a program

and immediately give the user feedback as they edit the file. For example, type checking is done

on the fly. However, higher level analyses can also be performed. For example, the tool will

highlight an external procedure that contains no outputs and modifies no global variables,

notifying the user that the procedure basically performs a null-operation.

Further, when a program is analzyed the results are displayed conveniently for the user in

a tab labeled Analysis Results. This tab is shown in Figure 10.

Figure 10 - Analysis Results Tab

If a property has failed, such as main_post3, shown in Figure 10, the user can easily

right-click on it and display the counterexample trace inside of the IDE. This capability is shown

in Figure 11. It is very useful for understanding why a property has failed and provides

assignments to each variable in the program that the user can conveniently view, even collapsing

large record and array objects for the user’s convenience.

www.manaraa.com

55

Figure 11 - Viewing the counterexample trace in the Eclipse IDE

www.manaraa.com

56

CHAPTER 7. FUTURE WORK

The reasoning approach used by SIMPAL involves generating the CFG for the program

and producing a state machine that is then executed. Each block in the CFG is modeled as a

Lustre node, and the state of the program are passed to each node as it is executed. This approach

maps the execution of the program over multiple Lustre time steps; one time per basic block in

the CFG. As discussed previously, the inherent flaw in this approach is that for large programs, a

significant number of Lustre steps must be executed to reach the end of the program. Depending

on the program structure, it may take a very high k-value to prove that the postconditions of the

program hold. Generally, proofs requiring high k-values for k-induction take a longer time to

prove. This means that SIMPAL may not scale well for long programs. Future work on SIMPAL

will address these issues. There are areas where improvements could be made to the translator to

improve performance, and each is discussed in the following sections.

Loop Unwinding

The CBMC [44] model checker model performs bounded model checking of ANSI C

programs. Unlike SIMPAL, CBMC unwinds loops [45] into a flat representation before sending

it to the underlying solver. The benefit of this is it maps the execution of the entire program into

a single Lustre step which helps reduce the k-value necessary to prove properties of the program

when it terminates. The drawback of this however is it an undecidable problem to unwind loops

the correct number of times (particularly for while loops) and thus, it would require human

assistance to ensure that all loops in the program are unwound the correct number of times. The

other drawback is it can be difficult to understand the underlying model due to complicated state

variable interactions necessary to capture the control-flow aspects of the program correctly.

www.manaraa.com

57

Emitting Lemmas based on the CFG Structure

One useful approach in k-induction model checkers is the use of generated invariants.

JKind, Kind 2, and other k-induction model checkers devote an entire process to generating

invariants for transition systems. Some invariants can serve as lemmas in the proof proving

process. A useful lemma can make a property that was once solved by k-induction (for

k=2,3,4,…) inductive (k=1). Inductive properties are often solvable very quickly via model

checking and as such, the practice of invariant generation can be beneficial when solving

properties of industrial software.

JKind already uses invariant generation for models translated by SIMPAL. However,

JKind’s lemma generation capability only generates lemmas based on datatypes in the model.

SIMPAL could emit lemmas at translation time based on the structure of the model. It is not

clear however, which lemmas would be helpful. The first step in this work would be to do an

empirical study on large models and determine which lemmas would be helpful, generalize an

approach from those examples and then implement the approach in the tool.

Another way to support lemmas would be to allow users to specify invariants inside of

the program as part of the program, similar to an assert statement in Java. Currently, users can

only specify preconditions and postconditions for local and external procedures. Allowing users

to specify invariants anywhere in the body of local procedures would allow domain experts

developing the specification to identify invariants for loops, and other structures of the program,

which could then be fed to the JKind model checker as part of the translation.

Develop Formal Semantics for the Limp language

The input language to SIMPAL, Limp, does not currently have a defined formal

semantics. By defining a formal semantics for the Limp language, it will be possible to

www.manaraa.com

58

demonstrate that the translation from Limp to Lustre is correct. This step would encourage more

widespread adoption of the tool within other frameworks.

Integrate SIMPAL with AGREE

SIMPAL’s input language, Limp, is slightly more expressive than the Lustre language

supported by AGREE. It is also easier to concisely represent software programs. Integrating

SIMPAL with AADL would provide a more flexible language for expressing behavioral

information about systems and software architectures specified within AADL. In fact, there are

no drawbacks; everything representable with Lustre is representable with SIMPAL. If a system’s

behavioral information does not use control the emitted Limp model is very similar to the Lustre

representation. Future work should focus on integrating SIMPAL in the AGREE framework to

allow for greater flexibility in AADL behavioral descriptions supported by AGREE.

www.manaraa.com

59

SUMMARY AND CONCLUSIONS

SIMPAL is a tool for performing compositional verification of programs written in an

imperative style language called Limp. It supports reasoning over a full complement of control

flow mechanisms and global variables. This represents a significant improvement over the

AGREE framework which can only reason about programs expressed in the synchronous

dataflow language Lustre. SIMPAL can be used to express programs constructed of existing

components and then reason about whether the new, composed program will accomplish its

goals. The analysis it performs is contract-based verification; that is, it verifies that the top-level

program utilizes the components in a manner that is consistent with their preconditions and that

the composition of the components satisfies the top level program’s postconditions. SIMPAL

also analyzes the provided program to establish that each node of the program’s CFG is

reachable and viable. Reachability simply establishes that each node of the CFG can be reached

while viability establishes that each node of the program is reachable while preserving the

component and overall program’s preconditions.

SIMPAL analyzes a given program by breaking it down into a CFG and representing it as

a state machine, in the Lustre language. This Lustre representation of the program is then passed

to the JKind model checker for analysis. The analysis is performed and the results are provided

to the user. Falsified properties are accompanied with counterexamples to help the user

understand how the program violates them. SIMPAL is implemented in the Eclipse framework.

The domain specific language (DSL), Limp, is built using the XText framework for developing

DSLs. The tool is open source and available for download on the SIMPAL Github repository

[46].

www.manaraa.com

60

REFERENCES

[1] D. Cofer, A. Gacek, S. Miller, M. Whalen, B. LaValley and L. Sha,

"Compositional Verification of Architectural Models," in Proceedings of the 4th

NASA Formal Methods Symposium, Norfolk, 2012.

[2] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud, "The synchronous data

flow programming language LUSTRE," Proceedings of the IEEE, vol. 79, pp.

1305-1320, 1991.

[3] R. Kumar and V. Garg, Modeling and Control of Logical Discrete Event

Systems, Spring Science & Business Media, 2012.

[4] F. Balduzzi and R. D. d. A. Kumar, "Hybrid automata model of

manufacturing systems and its optimal control subject to logical constraints,"

International Journal of Hybrid Systems, vol. 3, no. 1, pp. 61-80, 2003.

[5] M. Dierkes, "Formal Analysis of a Triplex Sensor Voter in an Industrial

Context," in FMICS'11 Proceedings of the 16th International Conference on

Formal Methods for Industrial Critical Systems, 2011.

[6] Unviersity of Iowa, "Kind 2 Home Page," [Online]. Available: http://kind2-

mc.github.io/kind2/. [Accessed 2016 07 2016].

[7] E. Clarke, A. Biere, R. Raimi and Y. Zhu, "Bounded Model Checking

Using Satisfiability Solving," Formal Methods in System Design, vol. 19, pp. 7-34,

2001.

www.manaraa.com

61

[8] L. de Moura, H. Rueß and M. Sorea, "Bounded Model Checking and

Induction: From Refutation to Verification," in Computer Aided Verification

(CAV) 2003, Springer Berlin Heidelberg, 2003, pp. 14-26.

[9] A. Bradley, "SAT-based model checking without unrolling," in

Proceedings of 12th International Conference on Verification, Model Checking,

and Abstract Interpretation (VMCAI), 2011.

[10] A. Gacek, "JKind Github homepage," Rockwell Collins, [Online].

Available: https://github.com/agacek/jkind. [Accessed 29 May 2015].

[11] Mathworks, "Simulink Design Verifier Product Page," Mathworks,

[Online]. Available: http://www.mathworks.com/products/sldesignverifier/.

[Accessed 21 August 2016].

[12] C. Zhou and R. Kumar, " Semantic translation of simulink diagrams to

input/output extended finite automata," Discrete Event Dynamic Systems, vol. 22,

no. 2, pp. 223-247, 2012.

[13] E. Clarke and E. A. Emerson, "Design and Synthesis of Synchronization

Skeletons," in Logic of Programs Workshop, Yorktown Heights, 1981.

[14] J.-P. Queille and J. Sifakis, "Specification and Verification of Concurrent

Systems in Cesar," in Proceedings of Fifth International Symposium of

Programming, 1981.

[15] G. Holzmann, "The Model Checker SPIN," IEEE Transactions in Software

Engineering, pp. 279-295, May 1997.

www.manaraa.com

62

[16] G. Holzmann, "Mars Code," Communications of the ACM, pp. 64-73,

February 2014.

[17] F. Schneider, S. Easterbrook, J. Callahan and G. Holzmann, "Valiating

Requirements for Fault Tolerant Systems using Model Checking," in Proceedings

of the Third International Conference of Requirements Engineering, Colorado

Springs, 1998.

[18] G. Holzmann, "On Limits and Possibilities of Automated Protocol

Analysis," in Proceedings of the IFIP WG6.1 Seventh International Conference on

Protocol Specification, Testing and Verification VII, 1987.

[19] D. Peled, "All from one, one for all: on model checking using," in

Proceedings of the 5th International Computer Aided Verification (CAV)

Conference, 1993.

[20] G. Holzmann and D. Bosnacki, "The Design of a Multicore Extension of

the SPIN Model Checker," IEEE Transactions on Software Engineering, vol. 33,

no. 10, pp. 659-674, 2007.

[21] J. Burch, E. Clarke, K. McMillian, D. Dill and L.-J. Hwang, "Symbolic

model checking: 1020 states and beyond," in Proceedings of the Fifth Annual IEEE

Symposium on Logic in Computer Science, 1990.

[22] Carnegie Mellon, "The SMV System," [Online]. Available:

http://www.cs.cmu.edu/~modelcheck/smv.html. [Accessed 12 June 2016].

www.manaraa.com

63

[23] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri, "NUSMV: A New

Symbolic Model Verifier," in Proceedings of the 11th International Conference on

Computer Aided Verification, 1999.

[24] SRI International, Computer Science Laboratory, "Symbolic Analysis

Labotory Tool page," [Online]. Available: http://sal.csl.sri.com/. [Accessed 2016

June 12].

[25] S. Miller, M. Whalen and D. Cofer, "Software Model Checking Takes Off,"

Communications of the ACM, vol. 53, no. 2, pp. 58-64, 2010.

[26] A. Biere, A. Cimatti, E. Clarke and Y. Zhu, "Symbolic Model Checking

without BDDs," in Tools and Algorithms for the Construction and Analysis of

Systems (TACAS '99), Amsterdam, 1999.

[27] G. Hagen and C. Tinelli, "Scaling up the formal verification of Lustre

programs with SMT-based techniques," in Proceedings of the 8th Internal

Conference on Formal Methods in Computer-Aided Design, Portland, 2008.

[28] T. Kahsai and C. Tinelli, "PKind: A parallel k-induction based model

checker," in Parallel and Distributed Methods in Verification, 2011.

[29] J. Burch, E. Clarke and D. Long, "Symbolic Model Checking with

Partitioned," in Proceedings of the IFIP TC10/WG 10.5 International Conference

on Very Large Scale Integration, Edinburg, 1991.

[30] S. V. A. Campos, "A Quantitative Approach to the Formal," 1996.

www.manaraa.com

64

[31] S. Quinton, S. Graf and R. Passerone, "Contract-Based Reasoning for

Component Systems with Complex Interactions," Verimag, 2010.

[32] Carnegie Mellon University, "Open Source AADL Tools Environment

(OSATE)," Carnegie Mellon University, 24 May 2016. [Online]. Available:

http://http://osate.github.io. [Accessed 20 August 2016].

[33] A. Cimatti, M. Dorigatti and S. Tonetta, "OCRA: A tool for checking the

refinement of temporal contracts," in Proceedings of the 28th International

Automated Software Engineering Conference, Silicon Valley, 2013.

[34] A. Cimatti, M. Dorigatti and S. Tonetta, "OCRA: Othello Contracts

Refinement Analysis Version 1.3 User's Guide," [Online]. Available: https://es-

static.fbk.eu/tools/ocra/download/OCRA_Language_User_Guide.pdf. [Accessed

20 August 2016].

[35] Fondazione Bruno Kessler, "NuXMV Home page," Fondazione Bruno

Kessler, 2014. [Online]. Available: https://es-

static.fbk.eu/tools/nuxmv/index.php?n=Main.HomePage. [Accessed 20 August

2016].

[36] Fondazione Bruno Kessler, "HyCOMP Home page," Fondazione Bruno

Kessler, [Online]. Available: https://es-static.fbk.eu/tools/hycomp/. [Accessed 20

August 2016].

[37] Frama-C, "Frama-C product website," [Online]. Available:

http://www.frama-c.com. [Accessed 23 January 2015].

www.manaraa.com

65

[38] P. Cousot and R. Cousot, "Abstract Interpretation: A unified lattice model

for static analysis of programs by construction or approximation of fixpoints.," in

Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, New York, 1977.

[39] Frama-C, "Frama-C Value Analysis Plug-in," [Online]. Available:

http://frama-c.com/value.html. [Accessed 09 July 2015].

[40] Frama-C, "The Frama-C ANSI/ISO C Specification Language," [Online].

Available: http://frama-c.com/acsl.html. [Accessed 20 August 2016].

[41] SPARK Project, "SPARK 2014 Project Page," [Online]. Available:

http://www.spark-2014.org/. [Accessed 20 August 2016].

[42] D. Hoang, Y. Moy, A. Wallenburg and R. Chapman, "SPARK 2014 and

GNATprove," International Journal on Software Tools for Technology Transfer,

vol. 17, no. 6, pp. 695-707, 2015.

[43] L. Wagner, "SIMPAL Github Repostory grammar," 2017. [Online].

Available:

https://github.com/lgwagner/SIMPAL/blob/master/source/com.rockwellcollins.atc.

limp/src/com/rockwellcollins/atc/Limp.xtext. [Accessed 13 February 2017].

[44] D. Kroenig, "CBMC Model Checker Homepage," [Online]. Available:

http://www.cprover.org/cbmc/. [Accessed 28 July 2016].

www.manaraa.com

66

[45] E. Clarke and D. Kroenic, "Hardware Verification using ANSI-C Programs

as a Reference," in Proceedings of the 2003 Asia and South Pacific Design

Automation Conference.

[46] L. Wagner, "SIMPAL Github Repository," [Online]. Available:

http://www.github.com/lgwagner/simpal. [Accessed 13 February 2017].

	2017
	SIMPAL: A Compositional Reasoning Framework for Imperative Programs
	Lucas G. Wagner
	Recommended Citation

	Microsoft Word - SIMPAL.docx

